
The PEBL Manual
Programming and Usage Guide for

The Psychology Experiment Building Language

PEBL Version 2.0

Shane T. Mueller

©2003-2016 Shane T. Mueller smueller@obereed.net
shanem@mtu.edu

Current for PEBL Version 2.0 � Released 2016
http://pebl.sourceforge.net

i

mailto:smueller@obereed.net
mailto:shanem@mtu.edu
http://pebl.sourceforge.net

COPYRIGHT ©2016 Shane T. Mueller. All rights reserved.
ISBN 978-0-557-65817-6

ii

Contents

1 About 1

2 Usage 3

2.1 How to Compile PEBL 2.0 . 3

2.1.1 Linux . 3

2.1.2 Microsoft Windows . 3

2.1.3 Mac OSX . 4

2.2 Installation . 4

2.2.1 Linux . 4

2.2.2 Microsoft Windows . 4

2.2.3 Macintosh OSX . 4

2.3 How to Run a PEBL Program 4

2.3.1 Linux . 4

2.3.2 Microsoft Windows . 5

2.3.3 Macintosh OSX . 5

2.4 How to stop running a program 6

2.5 Command-line arguments . 6

2.6 System Status Output . 7

3 How to Write a PEBL Program 9

3.1 Basic PEBL Scripts . 9

3.2 Case Sensitivity . 10

3.3 Syntax . 10

3.4 Expressions . 12

3.5 loop() syntax. 13

3.6 Variables . 14

3.6.1 Coercion/casting . 14

3.6.2 Variable Naming . 14

3.6.3 Variable Scope . 14

3.6.4 Copies and Assignment 15

3.6.5 Passing by Reference and by Value 16

3.7 Functions . 16

3.8 A Simple Program . 18

iii

CONTENTS CONTENTS

4 Overview of Object Subsystems 19
4.1 Lists . 19

4.1.1 Growing Lists . 20
4.1.2 Recursion on lists . 22

4.2 Fonts . 23
4.3 Colors . 25
4.4 Windows . 25
4.5 Graphical Widgets . 25
4.6 Images . 26
4.7 Canvases . 26
4.8 Shapes . 27

4.8.1 Circle . 27
4.8.2 Ellipse . 28
4.8.3 Square . 28
4.8.4 Rectangle . 28
4.8.5 Line . 29
4.8.6 Polygon . 29
4.8.7 Bezier . 29

4.9 Text Labels . 30
4.10 Text Boxes . 30
4.11 User-Editable Text Boxes . 30
4.12 Audio . 32
4.13 Movie Files . 32
4.14 Custom objects . 33
4.15 Keyboard Entry . 34
4.16 Joystick Input . 34
4.17 Files . 36
4.18 Network Connections . 37

4.18.1 TCP/IP Overview . 37
4.18.2 Addresses and Ports . 37
4.18.3 Sending and Receiving Data 38
4.18.4 Closing networks . 38

4.19 Parallel Port . 39
4.20 Serial Port . 39
4.21 The Event Loop . 40
4.22 Parameter Setting . 40
4.23 Errors and Warnings . 41
4.24 Paths and Path Searching . 42
4.25 Controlling the Video settings . 42

4.25.1 Screen resolution . 42
4.25.2 Fullscreen mode . 43
4.25.3 Video drivers . 43
4.25.4 Synchronize to vertical refresh signal (vsync) 43
4.25.5 Multiple windows . 43

4.26 StickyKeys . 44
4.27 Provided Media Files . 45

iv

CONTENTS CONTENTS

4.28 Special Variables . 46

5 Function Quick Reference 49

6 PEBL User Interface Functions 67
6.1 Overview . 67
6.2 TextEntry . 68

6.2.1 Usage . 68
6.2.2 Methods and related functions 68

6.3 Menu . 69
6.3.1 Usage . 69
6.3.2 Methods and related functions 69

6.4 PullDown . 70
6.4.1 Usage . 70
6.4.2 Methods and related functions 71

6.5 Button . 71
6.5.1 Methods . 72
6.5.2 Usage . 72

6.6 Checkbox . 72
6.6.1 Usage . 72
6.6.2 Methods and associated functions 73

6.7 Scrollbox . 73
6.7.1 Usage . 73
6.7.2 Methods and related functions 74

6.8 ScrollingTextBox . 74
6.8.1 Usage . 74
6.8.2 Methods and related functions 75

6.9 PopupMessageBox . 75
6.9.1 Usage . 75

6.10 PopUpEntryBox . 76
6.10.1 Usage . 76

7 The PEBL Launcher 77
7.1 History of the Launcher . 78
7.2 How it works . 78
7.3 Features . 79

7.3.1 File browser . 79
7.3.2 Participant code . 79
7.3.3 Experimenter code . 79
7.3.4 Language . 80
7.3.5 Commmand Line Options 80
7.3.6 Edit and Parameters . 80
7.3.7 Fullscreen Mode . 80
7.3.8 Demographics Collection 80
7.3.9 Experiment Chains . 80
7.3.10 Saving Experiment Chains 81

v

CONTENTS CONTENTS

7.3.11 Editing Experiment chains 81
7.3.12 Loading Experiment Chains 81
7.3.13 Description and Screenshot 81
7.3.14 Message feedback windows 81
7.3.15 Other buttons . 82
7.3.16 Menu . 82

7.4 Launching an experiment . 83
7.5 Launching an experiment chain 83
7.6 Translating the Launcher . 83
7.7 Utility:Parameter setting . 84
7.8 Utility: Combining data �les . 84

8 The PEBL Psychological Test Battery 87
8.1 About the PEBL Test Battery 87
8.2 Setting Parameters of Battery Tests 87
8.3 Translating or changing test instructions 88
8.4 The Tests . 89

9 Detailed Function and Keyword Reference 111
9.1 Symbols . 111
9.2 A . 116
9.3 B . 120
9.4 C . 122
9.5 D . 133
9.6 E . 139
9.7 F . 142
9.8 G . 150
9.9 H . 168
9.10 I . 169
9.11 K . 180
9.12 L . 182
9.13 M . 192
9.14 N . 214
9.15 O . 218
9.16 P . 221
9.17 Q . 230
9.18 R . 231
9.19 S . 242
9.20 T . 262
9.21 U . 266
9.22 V . 268
9.23 W . 269
9.24 Z . 278

10 Color Name Reference 279

vi

Chapter 1

About

PEBL (Psychology Experiment Building Language) is a cross-platform, open-
source programming language and execution environment for constructing pro-
grams to conduct a wide range of archetypal psychology experiments. It is
entirely free of charge, and may be modi�ed to suit your needs as long as you
follow the terms of the GPL, under which the source code is licensed. PEBL is
written primarily in C++, but requires a few other tools (flex, yacc) and the
2.0 branch of the SDL libraries (SDL, SDL_image, SDL_gfx, and SDL_ttf) to
use. In addition, a set of audio recording functions are available using the (now
old and basically unmaintained) sdl_audioin library. Finally, the waave library
optionally supports movie playback on linux and windows.
It currently compiles and runs on Linux (using g++), Mac OSX (using xcode),
and Microsoft Windows (using code:blocks and mingw) platforms using
free tools. It has been developed primarily by Shane T. Mueller, Ph.D.
(smueller@obereed.net). This document was prepared with editorial and for-
matting help from Gulab Parab and Samuele Carcagno. In addition, much of
the material in the chapter on the PEBL Test battery was contributed by Bryan
Rowley. Contributions are welcome and encouraged.

1

mailto:smueller@obereed.net

Chapter 1. About

2

Chapter 2

Usage

Most users will be able to download a precompiled version of PEBL and run
experiments directly. Some advanced users may wish to compile their own
version, however. The next section describes how to do this.

2.1 How to Compile PEBL 2.0

Currently, there is no automated compile procedure. PEBL requires the SDL2,
SDL2_image, SDL2_gfx SDL2_net, SDL2_audioin and SDL2_ttf libraries and
development headers. It also uses flex and bison, but you can compile without
these tools. PEBL compiles on both Linux and Windows using the free gcc

compiler; on windows this is most easily supported through the code:blocks
IDE. Note that SDL-image may require jpeg, png, and a zlib compression
library, while SDL-ttf uses truetype 2.0.

2.1.1 Linux

PEBL should compile by typing `make' in its base directory once all requi-
site tools are installed and the source distribution is uncompressed. Currently,
PEBL does not use autotools, so its make system is rather brittle. Assistance
is welcome.

On Linux, compiling will fail if you don't have an /obj directory and all the
appropriate subdirectories (that mirror the main tree.) These will not exist if
you check out from CVS.

2.1.2 Microsoft Windows

On Microsoft Windows, PEBL is designed to be compiled using the Free IDE
code:blocks. A code:blocks project �le is included in the source code directory.
Email the PEBL list for more details.

3

Chapter 2. Usage

2.1.3 Mac OSX

Originally, PEBL compiled to a command-line function. Since 0.12, PEBL will
compile to a .app package using xcode. An xcode package is available in the
source archive.

2.2 Installation

2.2.1 Linux

On Linux, there are .deb packages available for debian. However, it is fairly easy
to compile and install from source. To begin, be sure that all the sdl packages
are installed. Then, go to the main pebl directory and type:

>make

>sudo make install

Once installed, you can install the test battery into Documents/pebl-exp.X

using the command pebl �install.

2.2.2 Microsoft Windows

In Microsoft Windows, we provide an installer package that contains all nec-
essary executable binary �les and .dlls. This installer places PEBL in
c:\Program Files\PEBL, and creates a directory pebl-exp.X in My Documents

with a shortcut that allows PEBL to be launched and programs that reside there
to be run.

2.2.3 Macintosh OSX

For OSX, we provide a .app package that can be dragged into your Applications
folder. The �rst time any user runs pebl, it gives the option to install the battery
and other �les into Documents
pebl-exp.X. Afterward, it will run the launcher from that directory.

2.3 How to Run a PEBL Program

The simplest way to run any PEBL script is via the launcher, which is available
on all platforms. The launcher is covered in detail in Chapter 6. But, you can
also launch experiments individually on each platform.

2.3.1 Linux

If you have installed PEBL into /usr/local/bin, you will be able to invoke
PEBL by typing `pebl2' at a command line. PEBL requires you to specify one
or more source �les that it will compile and run, e.g., the command:

4

Chapter 2. Usage

> pebl2 stroop.pbl library.pbl

will load the experiment described in stroop.pbl, and will load the supplemen-
tary library functions in library.pbl.

Additionally, PEBL can take the -v or -V command-line parameter, which al-
lows you to pass values into the script. This is useful for entering subject num-
bers and condition types using an outside program like a bash script (possibly
one that invokes dialog or zenity). A sample zenity script that asks for subject
number and then runs a sample experiment which uses that input resides in the
bin directory. The script can be edited to use fullscreen mode or change the
display dimensions, for example. See Section 2.3.3: Command-Line Arguments.

You can also specify directories without a �lename on the command-line (as
long as they end with `/'). Doing so will add that directory to the search path
when �les are opened.

2.3.2 Microsoft Windows

PEBL can be launched from the command line in Windows by going to the
pebl\bin directory and typing `pebl.exe'. PEBL requires you to specify one
or more source �les that it will compile and run. For example, the command

> pebl2.exe stroop.pbl library.pbl

loads the experiment described in stroop.pbl, and loads supplementary library
functions in library.pbl.

Additionally, PEBL can take the -v or -V command-line parameter, which al-
lows you to pass values in to the script. This is useful for entering condition
types using an outside program like a batch �le. the -s and -S allow one to
specify a subject code, which gets bound to the gSubNum variable. If no value is
speci�ed, gSubNum is initialized to 0. You can also specify directories without a
�le (as long as they end with `\'). Doing so will add that directory to the search
path when �les are opened. See Section 2.3.3: Command-Line Arguments.

Launching programs from the command-line on Windows is cumbersome. One
easy way to launch PEBL on Windows is to create a shortcut to the executable
�le and then edit the properties so that the shortcut launches PEBL with the
proper script and command-line parameters. Another way is to write and launch
a batch �le, which is especially useful if you wish to enter con�guration data
before loading the script.

2.3.3 Macintosh OSX

The latest version of PEBL packaged for OSX is 0.12. It is compiled as an
application bundle with both 32-bit and 64-bit architectures available. We do
not support PPC architecture.

The simplest way to run PEBL is through the launcher, but you can also use
Applescript to create your own sequences of experiments.

5

Chapter 2. Usage

On OSX, PEBL can be run as a command-line tool, just as in
linux. Once installed, the application is located at /Applica-
tions/pebl.app/Contents/MacOS/pebl2.

2.4 How to stop running a program

In order to improve performance, PEBL runs at the highest priority possible
on your computer. This means that if it gets stuck somewhere, you may have
di�culty terminating the process. We have added an `abort program' shortcut
key combination that will immediately terminate the program and report the
location at which it became stuck in your code:
press <CTRL><SHIFT><ALT><\> simultaneously.

2.5 Command-line arguments
Some aspects of PEBL's display can be controlled via command-line arguments.
Some of these are platform speci�c, or their use depends on your exact hardware
and software. The following guide to command-line arguments is adapted from
the output produced by invoking PEBL with no arguments:

Usage: Invoke PEBL with the experiment script �les (.pbl) and command-line
arguments.

Examples:
pebl2 experiment.pbl -s sub1 --fullscreen --display 800x600

--driver dga

pebl2 experiment.pbl --driver xf86 --language es

pebl2 experiment.pbl -v 33 -v 2 --fullscreen --display 640x480

Command-Line Options

-v VALUE1 -v VALUE2

Invokes script and passes VALUE1 and VALUE2 (or any text immediately
following a -v) to a list in the argument of the Start() function.
This is useful for passing in conditions, subject numbers, randomization
cues, and other entities that are easier to control from outside the script.
Variables appear as strings, so numeric values need to be converted to be
used as numbers.

-s VALUE

-S VALUE

Binds VALUE to the global variable gSubNum, which is set by default to 0.

--driver <drivername>

Sets the video driver, when there is more than one. On all platforms,
opengl and software should be available. In Linux, opengles is also avail-
able, and on windows, direct3d.

6

Chapter 2. Usage

--display <widthxheight>

Controls the screen width and height (in pixels). Defaults to the current
resolution of the screen. Unlike older versions of PEBL, after 0.12 any
legal combination of width and height should work.

The screensize a PEBL script runs at depends on a number of things. If
no �display size is given (e.g., when 'default' is chosen in the launcher),
PEBL will try to determine the current screen size and use that, for both
fullscreen and windowed mode. Otherwise, it will try to use the speci�ed
value.

However, these values are only a request. When the script starts, it sets
the values of the global variables gVideoWidth and gVideoHeight based
on either the speci�ed values or the current screen size. These values can
be changed in the script before the MakeWindow function is called, so that
a script can require a particular screen size. Then, the window will be
created with those dimensions, overriding any command-line parameters.
For greatest �exibility, it is recommended that you do not hard-code screen
size but rather make your test adapt to a large number of screen sizes.

Finally, if a screen size is selected that the video card cannot support
(i.e., in fullscreen mode), gVideWidth and gVideoHeight will be set to
the legal screen size closest to the one you requested. PEBL should never
crash because you have speci�ed the wrong screen size, but it should rather
use one it can support. The values of gVideoWidth and gVideoHeight

will be changed by MakeWindow to whatever screen size it actually uses.

--depth

Controls the pixel depth, which also depends on your video card. Cur-
rently, depths of 2,8,15,16,24, and 32 are allowed on the command-line.
There is no guarantee that you will get the speci�ed bit depth, and bit
depths such as 2 and 8 are likely never useful. Changing depths can, for
some drivers and video cards, enable better performance or possibly better
video sychrony. Defaults to 32.

--language

Allows user to specify a language code that can get tested for within a
script to select proper translation. It sets a global variable gLanguage,
and is �en� by default.

--windowed or --fullscreen Controls whether the script will run in a window
or fullscreen. The screen resolution a PEBL script runs at depends on a
number of things. See the --display option above for more details.

2.6 System Status Output
To help you debug what is happening and determine the system settings,

7

Chapter 2. Usage

information about PEBL system settings are printed out to stderr.txt. When
a window is created, the following information will be printed out.
Driver information

First, the available drivers will be described. All platforms should have opengl
and software, along with additional platform-speci�c drivers.

===

Available drivers

===

Render driver count: 3

Driver name (0): opengl

the renderer uses hardware acceleration

present is synchronized with the refresh rate

the renderer supports rendering to texture

Driver name (1): opengles2

the renderer uses hardware acceleration

present is synchronized with the refresh rate

the renderer supports rendering to texture

Driver name (2): software

the renderer is a software fallback

the renderer supports rendering to texture

===

Next, speci�c information about the video display and system will be printed.

--

Application settings:

Script name: [PEBL Launcher 2.0]

Mon Jun 20 22:02:24 2016

--

Display Mode: Width (pixels) [1000]

Display Mode: Height (pixels) [700]

Display Mode: Color Depth (bits) [32]

vsync mode: [0]

Software renderer mode: [0]

Windowed: [1]

Resizeable: [0]

Driver hint (gDriverHint): [none]

Base font (gPEBLBaseFont): [DejaVuSans.ttf]

Base Mono font (gPEBLBaseFontMono): [DejaVuSansMono.ttf]

Base serif (gPEBLBaseFontSerif): [DejaVuSerif.ttf]

Language (gLanguage): [en]

Parameter file (gParamFile): [/usr/local/share/pebl2/pebl-lib/params/launcher.pbl.par]

Busy/Easy wait: (gSleepEasy): [1]

Executable name: (gExecutableName): [pebl2]

Resource path: (gPEBLResourcePath): [/usr/local/share/pebl2]

Resource path: (gPEBLBasePath): [/usr/local/share/pebl2]

Working directory: (gWorkingDirectory): [/home/username/Documents/pebl-exp.2.0]

Renderer information:

Driver name: [opengl]

Software fallback: [no]

Hardware acceleration: [yes]

Vsync with refresh rate: [no]

Rendering to texture support [yes]

--

8

Chapter 3

How to Write a PEBL

Program

3.1 Basic PEBL Scripts

PEBL has a fairly straightforward and forgiving syntax, and implements most
of its interesting functionality in a large object system and function library of
over 125 functions. The library includes many functions speci�c to creating
and presenting stimuli and collecting responses. E�orts, however successful,
have been made to enable timing accuracy at a millisecond-scale, and to make
machine limitations easy to deal with.
Each PEBL program is stored in a text �le. Currently, no special authoring
environment is available. A program consists of one or more functions, and
must have a function called Start(). Functions are de�ned with the following
syntax:

define <function_name>(parameters)

{

statement 1

statement 2

....

return value3

}

The parameter list and the return value are optional. For the Start(par){}

function, par is normally bound to 0. However, if PEBL is invoked with -v

command-line parameters, each value that follows a -v is added to a list con-
tained in `par', which can then be accessed within the program:

9

Chapter 3. How to Write a PEBL Program

define Start(par)

{

Print(First(par))

}

A simple PEBL program that actually runs follows:

define Start(par)

{

Print("Hello")

}

Print() is a standard library function. If you run PEBL from a command-line,
the text inside the Print function will be sent to the console. On Windows,
it will appear in the �le `stdout.txt' in the PEBL directory. Although other
functions do not need a parameter argument, the Start() function does (case
values are passed in from the command-line).
A number of sample PEBL programs can be found in the /demo subdirectory.

3.2 Case Sensitivity

PEBL uses case to specify an item's token type. This serves as an extra con-
textual cue to the programmer, so that the program reads more easily and
communicates more clearly.
Function names must start with an uppercase letter, but are otherwise case-
insensitive. Thus, if you name a function "DoTrial", you can call it later as
"DOTRIAL" or "Dotrial" or even "DotRail". We recommend consistency, as it
helps manage larger programs more easily.
Unlike function names, variable names must start with an lowercase letter; if
this letter is a `g', the variable is global. This enforces a consistent and readable
style. After the �rst character, variable names are caseinsensitive. Thus, the
variable `mytrial' is the same as `myTrial'.
Currently, syntax keywords (like loop, if, de�ne, etc.) must be lowercase, for
technical reasons. We hope to eliminate this limitation in the future.

3.3 Syntax

PEBL has a simple and forgiving syntax, reminiscent of S+ (or R) and c. How-
ever, di�erences do exist.
Table 3.1 shows a number of keywords and symbols used in PEBL. These need
not appear in lowercase in your program.
Note that the `=' symbol does not exist in PEBL. Unlike other languages, PEBL
does not use it as an assignment operator. Instead, it uses `<-'. Because it is
confusing for users to keep track of the various uses of the = and == symbols,
we've eliminated the `=' symbol entirely. Programmers familiar with c will
notice a resemblance between PEBL and c. Unlike c, in PEBL a semicolon is
not necessary to �nish a statement. A carriage return indicates a statement is

10

Chapter 3. How to Write a PEBL Program

Table 3.1: PEBL Symbols and Keywords

Symbol/Keyword Usage

+ Adds two expressions together
- Subtracts one expression from another
/ Divides one expression by another
* Multiplies two expressions together
^ Raises one expression to the power of another
; Finishes a statement, or starts a new statement

on the same line (is not needed at end of line)
. The property accessor. Allows properties to be accessed by name
: Used to specify a default value in a function de�nition, and to access global function de�nition.
<- The assignment operator
() Groups mathematical operations
{ } Groups a series of statements
[] Creates a list
Comment�ignore everything on the line that follows
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
<> != ~= Not equal to
and Logical and
break Breaks out of a loop prematurely
not Logical not
or Logical or
while Traditional while loop
loop Loops over elements in a list
if Simple conditional test
if...else Complex conditional test
if...elseif...else Extended conditional chain
define De�nes a function
return Allows a function to return a value

11

Chapter 3. How to Write a PEBL Program

complete, if the current line forms a complete expression. You may terminate
every command with a `;' if you choose, but it may slow down parsing and
execution.
Another di�erence between c and PEBL is that in PEBL, {} brackets are not
optional: they are required to de�ne code blocks, such as those found in if and
while statements and loops.

3.4 Expressions

An expression is a set of operations that produces a result. In PEBL, every
function is an expression, as is any single number. Expressions include:

3 + 32

(324 / 324) - Log(32)

not lVariable

Print(32323)

"String " + 33

nsuho #this is legal if nsuho has been defined already.

Notice that "String " 33+ is a legal expresison. It will produce another string:
"String 33".
These are not expressions:

NSUHO #Not an expression

(33 + 33 #Not an expression

444 / 3342 + #Not an expression

NSUHO is not a variable because it starts with a capital letter. The other lines
are incomplete expressions. If the PEBL parser comes to the end of a line with
an incomplete expression, it will automatically go to the next line:

Print("hello " +

" world."

)

This can result in bugs that are hard to diagnose:

a <- 33 + 323 +

Print(1331)

sets a to the string "3561331".
But if a carriage return occurs at a point where the line does make a valid
expression, it will treat that line as a complete statement:

a <- 33 + 323

* 34245

12

Chapter 3. How to Write a PEBL Program

sets a equal to 356, but creates a syntax error on the next line.
Any expression can be used as the argument of a function, but a function may
not successfully operate when given bogus arguments.
If a string is de�ned across line breaks, the string de�nition will contain a
linebreak character, which will get printed in output text �les and textboxes.

text <- "this is a line

and so is this"

If you desire a long body of text without linebreaks, you must de�ne it piecemeal:

text <- "This is a line " +

"There is no line break before this line."

3.5 loop() syntax.

The main way of iterating in PEBL is via the loop syntax. ASome examples
include:
loop(i, [1,2,3])

{

Print(i)

}

loop(i, ["a","b","c"])

{

Print(i)

}

loop(i,10)

{

Print(i)

}

The loop function will execute the code in the brackets multiple times; once for
each element of the list speci�ed as the second argument. On each iteration, the
variable named in the �rst argument will be bound to a di�erent value. As of
2.0, the if the second argument is an integer, loop will automatically create a list
and iterate over the values 1...N up to the speci�ed number. So, the following
two are identical:

loop(i, Sequence(1,1000,1))

{

Print(i)

}

loop(i, 1000)

{

13

Chapter 3. How to Write a PEBL Program

Print(i)

}

In the future, the second version may be altered to be faster or use less memory.

3.6 Variables

PEBL can store the results of expressions in named variables. Unlike many
programming languages, PEBL only has one type of variable: a �Variant�. This
variable type can hold strings, integers, �oating-point numbers, lists, graphical
objects, and everything else PEBL uses to create an experiment. Unlike other
languages, a variable need not be declared before it can be used. If you try to
access a variable that has not yet been declared, PEBL will return a fatal error
that stipulates as such.

3.6.1 Coercion/casting

Variants just hide the representational structure from the user. An actual string
resides within the variant that holds a string. A long integer resides within the
variant that holds an integer.
PEBL Variants are automatically coerced or cast to the most appropriate inner
format. For example, 3232.2 + 33 starts out as a �oating point and an integer.
The sum is cast to a �oating point number. Similarly, "banana" + 33 starts as
a string and an integer, but the combination is a string.

3.6.2 Variable Naming

All variables must begin with a lowercase letter. Any sequence of numbers or
letters may follow that letter. If the variable begins with a lowercase `g', it has
global scope; otherwise it has local scope.

3.6.3 Variable Scope

As described above, variables can have either local or global scope. Any vari-
able with global scope is accessible from within any function in your program.
A variable with local scope is accessible only from within its own function. Dif-
ferent functions can have local variables with the same name. Generally, it is
a good idea to use local variables whenever possible, but using global variables
for graphical objects and other complex data types can be intuitive.

14

Chapter 3. How to Write a PEBL Program

3.6.4 Copies and Assignment

Variables may contain various types of data, such as simple types like integers,
�oating-point ratio numbers, strings; and complex types like lists, windows,
sounds, fonts, etc. A variable can be set to a new value, but by design, there
are very few ways in which a complex object can be changed once it has been
set. For example:

woof <- LoadSound("dog.wav")

meow <- LoadSound("cat.wav")

dog <- woof

Notice that woof and dog refer to the same sound object. Now you may:

PlayBackground(woof)

Wait(50)

Stop(dog)

which will stop the sound from playing. If instead you:

PlayBackground(woof)

Wait(50)

Stop(meow)

woof will play until it is complete or the program ends.
Images provide another example. Suppose you create and add an image to a
window:

mWindow <- MakeWindow()

mImage <- MakeImage("test.bmp")

AddObject(mImage, mWindow)

Draw()

Now, suppose you create another variable and assign its value to mImage:

mImage2 <- mImage

Move(mImage2, 200, 300)

Draw()

Even though mImage2 was never added to mWindow, mImage has moved: di�erent
variables now point to the same object. Note that this does not happen for
simple (non-object) data types:

a <- 33

b <- a

a <- 55

Print(a + " " + b)

This produces the output:

55 33

15

Chapter 3. How to Write a PEBL Program

This may seem confusing at �rst, but the consistency pays o� in time. The `<-'
assignment operator never changes the value of the data attached to a variable,
it just changes what the variable points to. PEBL is functional in its handling
of simple data types, so you can't, for example, directly modify the contents of
a string.

a <- "my string" #assigns a string literal to a

b <- a #makes b refer to a's string literal

a <- "your string" #re-assigns a to a new string literal

b <- a #makes b refer to a's new string literal

3.6.5 Passing by Reference and by Value

The discussion in 3.6.4 on copying has implications for passing variables into
functions. When a variable is passed into a function, PEBL makes a copy of
that variable on which to operate. But, as discussed in 3.6.4, if the variable
holds a complex data type (object or a list), the primary data structure allows
for direct modi�cation. This is practical: if you pass a window into a function,
you do not want to make a copy of that window on which to operate. If the
value is a string or a number, a copy of that value is made and passed into the
function.

3.7 Functions

The true power of PEBL lies in its extensive library of functions that allow
speci�c experiment-related tasks to be accomplished easily. For the sake of
convenience, the library is divided into a number of subordinate libraries. This
library structure is transparent to the user, who does not need to know where
a function resides in order to use it. Chapter 5 includes a quick reference to
functions; Chapter 10 includes a complete alphabetical reference.
To create your own function, you use the de�ne keyword, followed by the (Up-
percase) function name, the arguments, and the code delineated by brackets.
Within a function, the passed-in arguments and any new parameters will have
a scope local to that function. Any variables starting with a 'g' value will have
global scope, and be available outside the function.
Version 2.0 introduces two important new features to functions: optional/default
arguments and global-namespace functions.

16

Chapter 3. How to Write a PEBL Program

Optional/Default arguments

When you de�ne a function, you can specify a default value by following the
variable name with a colon and the default value.

define FunctionName(arg1, arg2:0, arg3:10)

{

Print(arg1+arg2+arg3)

}

When calling a function, it must be called with all its non-optional arguments,
but if an optional argument is not given, it will take on the default value.
Currently, if you cannot specify non-default values for arguments that occur
after the �rst default value you use, so in the above situation, you can call
FunctionName(1), Function(1,1,1), or FunctionName(1,1,1), but you can't skip
the second argument.

Calling functions in the global namespace

PEBL has two types of functions: built-in functions written in C++, and a
library of functiosn written in PEBL (located in the pebl-lib directory of the
PEBL directory). For all functions, if you de�ne a function with a name identical
to an already-de�ned function, it will use your newly-de�ned function instead
of the original. However, if the original was a compiled function, you can still
access that function by pre-pending the name with a colon.
This is useful if you want to rename a function for debugging or other purposes,
but still want to access the original. For example, supposed I wanted to log the
time of each Draw() function, I could rede�ne Draw:

define Draw(x)

{

Print("Draw command issued:" + GetTime())

:Draw(x)

}

We use this in the Debug.pbl directory, which opens up a debugging window
and prints to the window.

17

Chapter 3. How to Write a PEBL Program

3.8 A Simple Program

The previous sections provide everything you need to know to write a simple
program. Here is an annotated program:
Any line starting with a # is a comment. It gets ignored.

#Every program needs to define a function called Start()

#Start always needs a parameter

define Start(par)

{

number <- 10 ##Assign a number to a variable

hello <- "Hello World" ##Assign a string to a variable

##Create a global variable (starts with little g)

gGlobalText <- "Global Text"

##Call a user-defined function (defined below).

value <- PrintIt(hello, number)

##It returned a value

#Call a built-in function

Print("Goodbye. " + value)

}

##Define a function with two variables.

define PrintIt(text, number)

{

#Seed RNG with the current time.

RandomizeTimer()

#Generate a random number between 1 and number

i <- RandomDiscrete(number) #this is a built-in function

##Create a counter variable

j <- 0

##Keep sampling until we get the number we chose.

while(i != number)

{

Print(text + " " + i + gGlobalText)

i <- RandomDiscrete(number)

j <- j + 1

}

return(j) #return the counter variable.

}

More sample programs can be found in the demo/ and experiments/ directories
of the PEBL source tree.

18

Chapter 4

Overview of Object

Subsystems

In PEBL, complex objects are stored and automatically self-managed. These
objects include lists, graphical display widgets like images and text displays,
fonts, colors, audio �les, and input or output �les. Objects are created and
modi�ed with special functions, but many of their properties available directly
for access and modi�cation with a variable.property syntax. For example,
the position of a textbox is controlled by .X and .Y properties, and can also be
changed with the Move() function. To move the label lab, which is located at
100,100, to 150,100, you can either do Move(lab,150,100) or lab.X <- 150.
The available properties and accessor function are listed in the decriptions of
their relevant objects below.

4.1 Lists

Lists are incredibly useful and �exible storage structures that play an important
role in PEBL. A list is simply a series of variables. It is the equivalent to a vector,
array, or other similar data structure in many other programming languages.
Creating and accessing elements of lists can be accomplished in a number of
ways. If you have a set of values you want to create a list from, you simply need
to put them inside square brackets, separated by commas:

mylist <- [1,2,3,4,5,6,7,8,9]

Many functions related to experimental design return lists already created. Two
simple functions are Repeat and Sequence:

list1 <- Repeat(0,10) ##ten zeroes

list2 <- Sequence(0,20,2) ##numbers 0 to 20 step 2

Accessing list items can be done in a number of ways. The simplest is using
the Nth() function. For a slightly more complex example, suppose you want to

19

Chapter 4. Overview of Object Subsystems

print out every item in a list. Looping through, accessing, and printing all the
items of a list using this approach:

list <- Sequence(1,9,1)

len <- Length(list)

i <- 1

while (i <= len)

{

item <- Nth(list,i)

Print(item)

i <- i + 1

}

Note that prior to PEBL 0.12, using Nth to access list items was ine�cient.
Since PEBL 0.13, you can use Nth to access list items in amortized constant
time! But nevertheless, the above method of looping is verbose and error-prone.
There is an alternative. Items from lists can be iterated over using the `loop'
command:

list <- Sequence(1,9,1)

loop(item, list)

{

Print(item)

}

These two code blocks produce identical output, but in the former block, each
item of the list must be found on each iteration, but in the latter block, a list
item is bound directly to `item' on each iteration. There is no appreciable
di�erence in the e�ciency of these two methods, but the second is simpler and
in many cases easier to use, and avoids some errors (like forgetting to increment
i).

4.1.1 Growing Lists

Oftentimes, you want to create a list one element at a time. For example,
you may have a sampling scheme for stimuli and need to pick each consecutive
randomly, or you want to record response times or accuracies one trial at a time.
There are two ways you can do this. If you know how long your list will be,
you can create a list with as many elements as you need, and then alter each
element one at a time.

##I need ten items

items <- Repeat(0,10)

i <- 1

20

Chapter 4. Overview of Object Subsystems

while(i <= Length(items))

{

SetElement(items,i,Random())

}

Oftentimes, however, this is di�cult because you do no know how long the list
should be at the beginning. The Append() function is able to add an item to
the end of a list, and you can use that to 'grow' a list one item at a time:

##I need ten items

items <- []

i <- 1

while(i <= 10)

{

items <- Append(items,Random())

}

This ideom is used in many places in PEBL test batteries. However, it can be
ine�cient as the length of the list grows. This is because on each iteration,
a new list is created that is 1 element longer than the previous list (and each
element is copied to the new list). For small lists, even ones hundred of items
long, this overhead is pretty small and you hardly notice. But as a list gets
thousands of items long, this can start to slow things down, especially if you
are doing something complex between each trial. As of PEBL 0.13, we support
another function called PushOnEnd():

items <- []

i <- 1

while(i <= 10)

{

PushOnEnd(items,Random())

}

PushOnEnd will alter items directly, and do so in a very e�cient way. Notice
that you don't need to copy the new list and overwrite itself. However, for ease
of use, PushOnEnd() returns the current copy of the list, and so you can often
use it as a drop-in replacement for Append (in cases where you are throwing
away the original list). In tests, this method appears to be only 5-10% less
e�cient than using PushOnEnd alone, and so it should hardly be noticed.

items <- []

i <- 1

while(i <= 10)

{

items <- PushOnEnd(items,Random())

}

21

Chapter 4. Overview of Object Subsystems

A caveat when using lists: Some functions operate on lists to produce new
lists (sub-lists, re-ordered lists, etc.). When the lists contain simple data types
(numbers, strings, etc.), entirely new data structures are created. But when
the data structures are complex (windows, sounds, images, etc.), the objects
are not copied. Only new pointers to the original objects are created. So if
you change the original object, you may end up accidentally changing the new
object. Although that is relatively di�cult, because PEBL allows only limited
modi�cation of existing data structures, it is still possible. This is a special case
of the copy/assignment issue discussed in Section 3.6.4: Copies and Assignment.

4.1.2 Recursion on lists

Many mathematical functions that take a single argument can be applied either
to a number or a list of numbers. When applied to an entire list, it will return
the function applied to each element of that list. For example, Ln(1) return 0,
but Ln([1,1,1] returns [0,0,0].
A list of functions that support this include:
� Log10 � Log2 � Ln � Exp

� Sqrt � Tan � Sin � Cos

� ATan � ASin � ACos � DegToRad

� RadToDeg � Round � Floor � Ceiling

� AbsFloor � Sign � Abs
In addition, a number of math functions that take two argumunts will apply
themselves recursively to the �rst argument should it be a list. For example,
LogN([1,1,1],5) will return [0,0,0]. Functions that support this include:
� LogN � Pow � NthRoot

22

Chapter 4. Overview of Object Subsystems

4.2 Fonts

PEBL uses truetype fonts for the display of text in labels and other text widgets.
In addition to the �lename, font objects have the following properties: style (i.e.,
normal, bold, italic, underline), size (in points), foreground color, background
color, and whether it should be rendered anti-aliased.
We distribute a series of high-quality freely available and redistributable fonts,
including the DejaVu series, freefont series, and a few others. These include the
typeface/�les shown below 4.1:
These should always be available for use in experiments. The fonts.pbl script
in the demo/ directory will display what symbols from each of these fonts looks
like.
To use, you need only specify the font name in the MakeFont() function:

colorRed <- MakeColor("red")

colorGrey <- MakeColor("grey")

myFont <- MakeFont("VeraMono.ttf",0,22,colorRed,colorGrey,1)

This code makes a red 22-point anti-aliased font on a grey background. Other
fonts may be used by specifying their absolute pathname or copying them to
the working directory and using them.
Accessible font properties:

font.FILENAME

font.BOLD

font.UNDERLINE

font.ITALIC

font.SIZE

font.FGCOLOR

font.BGCOLOR

font.ANTIALIASED

Having the right fonts is important for translating PEBL scripts into new lan-
guages. Previously, this was challenging because the default font used in many
scripts was Vera, and Vera has poor support for international characters. As of
PEBL 0.11, a few things have changed to make international character support
easier:

� Three new fonts that support international characters much better (�De-
jaVuSans.ttf�, �DejaVuSansMono.ttf�, and �DejaVuSerif.ttf�) are now in-
cluded and available.

� Three new global variables are set on initiation: gPEBLBaseFont,
gPEBLBaseFontMono, and gPEBLBaseFontSerif, which are set by default
to these three font names.

� Helper functions and battery tests are all updated to use these values to
set up fonts.

23

Chapter 4. Overview of Object Subsystems

Table 4.1: Typeface/Files Available in PEBL

Filename Description

FreeFont Fonts
FreeSans.ttf Simple Clean sans serif font
FreeSansBold.ttf

FreeSansOblique.ttf

FreeSansBoldOblique.ttf

FreeMono.ttf Courier-like fontface
FreeMonoBold.ttf

FreeMonoOblique.ttf

FreeMonoBoldOblique.ttf

FreeSerif.ttf Similar to Times New Roman
FreeSerifBold.ttf

FreeSerifItalic.ttf

FreeSerifBoldItalic.ttf

Fontforge Fonts
Caliban.ttf Helvetica-style
CaslonRoman.ttf Quirky Roman Font series
CaslonBold.ttf

CaslonItalic.ttf

Caslon-Black.ttf

Humanistic.ttf Sharp, re�ned fontface

SIL Fonts
DoulosSILR.ttf Comprehensive font with roman and cyrillic glyphs
GenR102.ttf Includes many latin alphabet letters
GenI102.ttf

CharisSILR.ttf Like doulos, optimized for printing
CharisSILB.ttf

CharisSILI.ttf

CharisSILBI.ttf

PEBL Fonts
Stimulasia.ttf A small set of arrow/boxes

Bitstream Vera Series (Deprecated in favor of DejaVu)
Vera.ttf Sans serif Roman-style base font
VeraMono.ttf Sans serif Roman-style mono-spaced base font
VeraSe.ttf Serif Roman-style base font (similar to times)
VeraBd.ttf Bold Vera
VeraIt.ttf Italic Vera
VeraBI.ttf Bold Italic Vera
VeraMoBd.ttf Bold Vera Mono
VeraMoIt.ttf Italic Vera Mono
VeraMoBI.ttf Bold Italic Vera Mono
VeraSeBd.ttf Bold Serif Vera

DejaVu Series (Version of Vera with international characters)
DejaVuSerif.ttf Serif Roman-style base font (similar to times)
DejaVuSans.ttf Serif Roman-style base font
DejaVuSansMono.ttf Sans serif Roman-style mono-spaced base font

CJK Fonts
wqy-zenhei.ttc All-purpose font with support for Chinese, Korean and Japanese

24

Chapter 4. Overview of Object Subsystems

So now, many international characters will be handled by default. For character
sets that aren't handled by DejaVu, simply needs to change gPEBLBaseFont to
name a font that can handle your characters (and include that font in the
program directory), and everything should work out �ne.

4.3 Colors

Colors are PEBL objects. A color can be created by specifying its name
using the MakeColor() function, or by specifying its RGB values using the
MakeColorRGB() function. A list of colors and their respective RGB values can
be found in the Colors.txt �le in the documentation directory, or in the �nal
chapter of the manual. There are nearly 800 from which to choose, so you can
create just about anything you can imagine.
Accessible color properties:

color.RED

color.GREEN

color.BLUE

color.ALPHA

4.4 Windows

To run an experiment, you usually need to create a window in which to display
stimuli. This is done with the MakeWindow() function. MakeWindow() will create
a grey window by default, or you can specify a color. Currently, an experiment
can have only one window.

4.5 Graphical Widgets

Graphical �widgets� are the building blocks of experimental stimuli. Currently,
four widgets are available: images, labels, canvasses, and textboxes. More com-
plicated widgets are in progress or planned. There are also a number of shapes
that in some ways behave like widgets, but are technically not.
To be used, a widget must be created and added to a parent window, and then
the parent window must be drawn. You can hide widgets with the Hide()

function, and show them with the Show() function; however, this a�ects only
the visibility of the widget: it is still present and consuming memory. Widgets
can be moved around on the parent window using the Move() function. Move()
moves the center of an image or label to the speci�ed pixel, counting from the
upper-left corner of the screen. Move() moves the upper left-hand corner of
textboxes. For the sake of convenience, the MoveCorner function is available,
which will move an image or label by its upper left-hand corner.
You should remove widgets from their parent window when you are �nished
using them.
All widgets have several properties available for controlling their behavior.

widget.name

25

Chapter 4. Overview of Object Subsystems

widget.X

widget.Y

widget.WIDTH

widget.HEIGHT

widget.VISIBLE

widget.ROTATION

widget.ZOOMX

widget.ZOOMY

4.6 Images

PEBL can read numerous image types, courtesy of the SDL_image library. Use
the MakeImage() function to read an image into an image object. As images are
often used as stimuli, Move() centers the image on the speci�ed point. To move
by the upper-left hand corner, use the PEBL-de�ned MoveCorner() function:

define MoveCorner(object, x, y)

{

size <- GetSize(object)

centerX <- x + First(size)/2

centerY <- y + Last(size)/2

Move(object, centerX, centerY)

}

Images have all the properties available for widgets, but the width and height
can only be read, and not set. Width and height are controlled by the dimensions
of the image �le.

4.7 Canvases

A canvas is a blank rectangle, sort of like an 'imageless' image. As with an image,
Move() centers the image on the speci�ed point. A canvas appears similar to a
Rectangle() shape, but di�ers in some important ways. First, a Canvas has a
piece of video memory associated with it�shapes do not. This means that other
objects can be added to a canvas, just as it can be added to a window. If you
move the canvas around, the attached objects will move with the canvas.
Second, individual pixels of a canvas can be set, using the SetPoint() function.
SetPoint works on images too, but not on text. This is because a Draw()
command re-renders text, and so will wipe out any pixel damage you have
done. This can be useful for making special-purpose drawing functions to create
stimuli, especially noise distributions.
Finally, a canvas can be drawn on with another object. In fact, you can you an-
other image as a brush. Add an image to a canvas, and anytime you call Draw()
on the canvas (rather than without an argument), the image gets imprinted on
the canvas. This will remain until you call ResetCanvas().
For example:

26

Chapter 4. Overview of Object Subsystems

tb <- MakeCanvas(600,400,d)

AddObject(tb,win)

##add the image to canvas, not win

pebl <- MakeImage("pebl.png")

AddObject(pebl,tb)

##Nothing will appear on the screen in these intermediate draws

Move(pebl,100,100)

Draw(pebl)

Move(pebl,200,100)

Draw(pebl)

Move(pebl,200,200)

Draw(pebl)

Move(pebl,100,200)

Draw(pebl)

Draw() ##Now, we will see the canvas with 4 pebl images on it.

The draw-on trick can be used to add noise to a text stimulus. Make a label
and add it to a canvas, use Draw() on the label, then hide the label, and add
noise to the canvas by using SetPoint(). Anything drawn on the canvas won't
get reset until the ResetCanvas() function is called.
Images have all the properties available for widgets. Size cannot be updated
once the canvas is created.
Note that the background color can have an alpha value. If you use an alpha
value of 0, the background will be invisible.

4.8 Shapes
PEBL allows you to de�ne a number of shape objects that can be added to
another widget. A demonstration script exercising these shapes is found in
demo/shapes.pbl.
The following is a list of shape and their properties.

4.8.1 Circle

Description: A standard circle. Move commands move the center of the circle
to the speci�ed location.

Command: Circle(<x>,<y>,<r>,<color>,<filled>)

Properties: .name
.�lled = 0,1 (whether it is �lled)
.color (color)
.x (x position of center)
.y (y position of center)

27

Chapter 4. Overview of Object Subsystems

.height (read-only height)

.width (read-only width)

.R (radius)

4.8.2 Ellipse

Description: An ellipse, with height and width di�ering. Cannot be pointed in
an arbitrary direction. Move commands move the center of the shape to the
speci�ed location.

Command: Ellipse(<x>,<y>,<rx>,<ry>,<color>,<filled>)

Properties: .name
.�lled = 0,1 (whether it is �lled)
.color (color)
.x (x position of center)
.y (y position of center)
.height (read-only height)
.width (read-only width)
.rx (x radius)
.ry (y radius

4.8.3 Square

Description: A square. Move commands move the center of the shape to the
speci�ed location.

Command: Square(<x>,<y>,<size>,<color>,<filled>)

Properties:
.name
.�lled = 0,1 (whether it is �lled)
.color (color)
.x (x position of center)
.y (y position of center)
.height (read-only height)
.width (read-only width)
.dx, .dy, .size (Length of side)

4.8.4 Rectangle

Description: A Rectangle. Move commands move the center of the rectangle to
the speci�ed location.

Command: Rectangle(<x>,<y>,<dx>,<dy>,<color>,<filled>)

28

Chapter 4. Overview of Object Subsystems

Properties: .name
.�lled = 0,1 (whether it is �lled)
.color (color)
.x (x position of center)
.y (y position of center)
.height (read-only height)
.width (read-only width)
.dx, (width) .dy, (height)

4.8.5 Line

Description: A Line. Move commands move the center of the line to the speci-
�ed location.
Command: Line(<x>, <y>,<dx>,<dy>,<color>)

Properties: .color (color)
.x (x position of start)
.y (y position of start)
.width, (x length)
.height, (y length)

4.8.6 Polygon

Description: An arbitrary polygon.
Command: Polygon(<x>, <y>,<xpoints>,<ypoints>,<color>,<filled>)

Properties: .name
.color (color)
.x (x position of start)
.y (y position of start)

4.8.7 Bezier

Description: An arbitrary bezier curve.
Command: Bezier(<x>, <y>,<xpoints>,<ypoints>,<steps>,<color>)

Properties: .name
.color (color)
.x (x position of start)
.y (y position of start)

29

Chapter 4. Overview of Object Subsystems

4.9 Text Labels

You can create a text label object with the MakeLabel() function, which requires
specifying a font, and the foreground and background colors. Labels are only
a single line of text. Like images, when you move them, they center on the
speci�ed point.

The text inside a label can be extracted with GetText() and set with
SetText(). When you change a text object, it will not appear until the next
time you call a Draw() function.

Text labels have all the regular widget properties, plus:

label.TEXT

label.FONT

The .HEIGHT and .WIDTH accessible, but cannot be changed because they are
controlled by the text and the font size.

4.10 Text Boxes

A text box is a graphical widget that contains a body of text. Text automatically
wraps when it is too long to �t on a single line. Like labels, the text inside a
TextBox can be extracted with GetText() and set with SetText(). When a
text object is changed, it rerenders immediately, but does not appear until the
next time a Draw() function is called.

Textbox properties:

textbox.EDITABLE

textbox.CURSORPOS

textbox.DIRECTION

textbox.LINEHEIGHT

textbox.LINEWRAP

4.11 User-Editable Text Boxes

Text box editing can be performed using the
GetInput(<textbox>,<escape-key>) function. This returns the text
that is present in the box when the participant hits the key associated with
<escape-key>. <escape-key> is just a text-based code that describes the
keypress that should be checked for exit. Typical escape-key options include:

"<return>"

"<esc>"

"<backspace>"

"<kp_enter>"

" "

"A"

See the Keyboard Entry section below for a more complete list.

30

Chapter 4. Overview of Object Subsystems

Translation from string to keyboard input is still crude, and is handled in
src/utility/PEBLUtility.cpp:TranslateString

31

Chapter 4. Overview of Object Subsystems

4.12 Audio

Currently, audio output is very primitive, and there are no facilities for
recording or analyzing audio input. Audio .wav �les can be loaded with
the LoadSound() function, which returns an audio stream object that can
be played with either the PlayForeground() or PlayBackground() functions.
The PlayForeground() function returns once the sound is �nished playing;
PlayBackground() returns immediately and the sound plays in a separate
thread. When using PlayBackground, playing can be stopped using the Stop()
function. If another PlayForeground() or PlayBackground() is then used, the
initial sound will immediately terminate and the new �le will play. Currently,
PEBL can only play one sound at a time.

4.13 Movie Files

If compiled to support them, PEBL can read numerous video and audio media
�les waave library and �mpeg. Use the LoadMovie() function to read a movie
�le into a movie object. The Move() function moves the upper left corner of
the movie to the speci�ed point. An audio �le can be similarly loaded using the
LoadAudioFile function.
Movie playback is done via a handler placed in the event loop. This handler
is placed there with the StartPlayback function. Then, when the event loop
runs, the movie will get updated in proper time sequence. The event loop is
used for most WaitFor type events. This allows you to play a movie and wait for
a response at the same time. Alternately, a complete movie �le can be played
in full (with no possibility for stopping early) using the PlayMovie() function.
Movies have a number of properties that can be set to change playback or
determine aspects of the movie. These are all accessible via .property syntax,
and can be printed by the PrintProperties function. Properties include:

� DURATION: time in ms

� FILENAME: �lename

� HEIGHT: pixels high

� NAME: <MOVIE>

� PLAYBACKPOSITION: where playback is

� ROTATION: Inherited; will not work

� VISIBLE: whether hidden or visible

� VOLUME: volume on a logarithmic scale�can go from 0 to +in�nity

� WIDTH: screen width in pixels

� X: upper left corner x

32

Chapter 4. Overview of Object Subsystems

� Y: upper left corner y

� ZOOMX: scaling; not used (just set width)

� ZOOMY: scaling; not used (just set height)

4.14 Custom objects
Along with the built-in objects, PEBL lets you create your own object with
properties that can be added, changed, and accessed using the .property
notation. With appropriate use of the CallFunction command, you can also
specify function handlers for functions such as Move(), Draw(), Inside(), or
whatever you want. The object system in PEBL is fairly (and intentionally)
primitive, without things you might expect from full-�edged object-oriented
languages (i.e., accessor functions, inheritance, methods, constructors, etc.).
Nevertheless, it can be very useful for encapsulating a lot of information about
a computing object, and is used heavily in the GUI objects found in the
launcher and other PEBL tools.

Use MakeCustomObject(name) to create a custom object. Then, a property can
be added by assigning obj.name. For example, suppose you want an object to
represent the x,y location of a point.

p1 <- MakeCustomObject("point")

p1.x <- 100

p1.y <- 100

Now, if you want to use access the x and y properties, do:

Print("position is:" p1.x + ","+ p1.y)

An object can take a function name as a property. For example:

p1.inside <- "InsidePoint"

With the function InsidePoint de�ned as:

define InsidePoint(x,y,p)

{

return (x==p.x and y==p.y)

}

If you had a bunch of objects, you could de�ne the .inside property of each
di�erently. Then, later, you could de�ne InsideObject to check any of them:

define InsideObject(x,y,p)

{

CallFunction(p.inside,[x,y,p])

}

33

Chapter 4. Overview of Object Subsystems

4.15 Keyboard Entry

PEBL can examine the state of the keyboard, and wait for vari-
ous keyboard events to happen. Functions such as WaitForKeyDown(),
WaitForAnyKeyDown(), etc., allow you to collect responses from subjects. Most
keys are speci�ed by their letter name; others have special names:
"<left>"

"<up>"

"<down>"

"<right>"

"<enter>"

"<return>"

"<esc>"

"<backspace>" or "<back>"

"<kp_0>" through "<kp_9>", as well as "<kp_period>", "<kp_divide>",

"<kp_multiply>", "<kp_minus>", "<kp_plus>", "<kp_equals>",

"<kp_enter>" for keypad keys.

"<insert>","<delete>", "<home>", "<end>","<pageup>","<pagedown>" for other

special keys.

Function keys "<F1>" through "<F15>".

Also, the traditional "modi�er" keys can serve as normal keys:

<lshift>, <rshift> <numlock>, <capslock>, <scrollock>,

<rctrl>, <lctrl>, <ralt>,<lalt>,<rmeta>,<lmeta>,<lsuper>,

<rsuper>,<mode>,<compose>

4.16 Joystick Input
PEBL supports input with a joystick. In order to use a joystick, you �rst need
to poll the computer to determine whether a joystick is attached, and create a
joystick object. The �le joysticktest.pbl in the demo directory creates a simple
visual depiction of a fairly standard gamepad.
A joystick will have up to four types of inputs on it: buttons, axes, hats, and
balls. But di�erent joysticks are di�erent, and so you may need to do some
checking and testing for your particular setup. PEBL currently does not support
force-feedback or rumble functions available on some joysticks.
Axes:

Each axis takes on a value between 1 and 32768. For a normal hand-grasp
joystick , the �rst two axis will be determined by the relative x and y posi-
tions of the joystick. Gamepads often have triggers that are additional axis, or
sometimes there are throttles (or gas/brake pedals in driving devices) that are
mapped to axes. Find out how many axes exist with GetNumJoystickAxes().
Get the state of a particula axis with GetJoystickAxisState().

34

Chapter 4. Overview of Object Subsystems

Hats:

Hats are the little 8-way buttons that control direction on many game pads.
They are sort of a digital axis, because each state is absolute. The entire hat
state takes on a single integer number between 0 and 15. It is binary coded to
specify whether each of the four major axes buttons are depressed:

� left: 8

� bottom: 4

� right: 2

� top: 1

The mechanics of the hat allows two buttons to be pressed simultaneously,
indicating, for example, southeast or northwest. An example of how to extract
the bitwise button states is found in the joysticktest.pbl �le.

Buttons:

Usually, the state of each of the buttons on the joystick can be identi�ed. Button
state is coded so that 0=unpressed, 1=pressed. There can easily be a dozen or
more buttons on a joystick, enabling some pretty elaborate response modes for
experiments.

Balls:

Balls are very rare; you may have seen them in old-style arcade games like
Arkenoid. No consumer joysticks available today appear to have balls that
operate this way, and they have not been tested in PEBL. If you want to sup-
port trackballs, there are plenty of trackball mice that work as normal joystick
controllers.
A number of functions are available for creating a joystick object and polling
the joystick's current state:
Summary of joystick functions:

GetNumJoysticks()

OpenJoystick()

GetNumJoystickAxes()

GetNumjJoystickBalls()

GetNumJoystickButtons()

GetNumJoystickHats()

GetJoystickAxisState()

GetJoystickHatState()

GetJoystickButtonState()

Currently, the joystick state is not integrated into PEBL's event loop. Conse-
quently, there are no functions such as WaitForJoystickButton(), and no way

35

Chapter 4. Overview of Object Subsystems

to create or monitor events. To use the joystick, you need to monitor the state
of the device manually, and create a polling loop yourself, like:

##This will keep looping until you press the first button

js < OpenJoystick(1) ##open the first joystick connected to the system

gCont <- 1

while (gCont)

{

state <- GetJoystickAxisState(js,1)

Print(state)

##Do something with the axis1 here

gCont <- GetJoystickButtonState(1)

}

The �le demo/joysticktest.pbl uses most of the available joystick functions to
display a virtual gamepad on the screen as it captures input.

4.17 Files

Files are objects that can be read from or written to using several PEBL func-
tions. To use a �le object, create one using one of the functions listed below.
Each function returns a �le object:

FileOpenRead()

FileOpenWrite()

FileOpenOverwrite()

FileOpenAppend()

GetNewDataFile()

ReadCSV()

For example, you can use the command:
myfile <- FileOpenRead("stimuli.txt")

to create `myfile', a readable �le stream.

FileOpenWrite is made with a safety backup. It will never overwrite an existing
�le; instead it will create a new �le name by appending a number (i.e. 1) to the
end of the base �le name. The new �lename will be saved as in the .�lename
property of the resulting �le. The function FileOpenOverwrite() will overwite
any existing �les, and should not be used for data �les when you have the chance
for a collision in a subject code.

The function GetNewDataFile() o�ers another all-in-one path for creating a
data �le. It will take a base name and a subject identi�er, a �le extension, and
a header. If the �le has not previously been created, it will create the new �le
and add a header row. If it has been created before, it will ask you whether to
append to the current data �le (in which case it won't add a header row), or

36

Chapter 4. Overview of Object Subsystems

select a new data �le. Data �les are created in separated subdirectories (one
per participant) within the data directory of the experiment.
Because some of the FileOpen commands will create a �le with a name you
didn't ask for (to avoid overwriting), a successfully opened �le has a property
.�lename that provides the actual �le name selected.
Other Functions described below allow �lestreams to be written to or read from.
When you are �nished, you can close a �lestream Using the `FileClose()'
function.
A number of related functions have been created to help make reading and
writing to �les easier. For example, the following functions enable reading an
entire �le into either a string variant, a list (with one list item per row), or a
table:

ReadCSV()

FileReadCharacter()

FileReadLine()

FileReadWord()

FileReadTable()

FileReadText()

FileReadList()

FileExists()

4.18 Network Connections

PEBL has limited ability to open and communicate via TCP/IP connections,
either some other system (e.g., for synchronizing with an e.e.g. or eyetracking
computer), or another computer running PEBL (e.g., to create multi-subject
game theory experiments or to have an experimenter controlling the task from
another computer.)

4.18.1 TCP/IP Overview

TCP/IP is a protocol by which computers can talk to one another. It is fairly
barebones, and PEBL tries to hide much of its complexity. The information
you send from one computer to another is guaranteed to arrive in the correct
order, at the potential cost of serious delays, especially if the computers are on
di�erent networks or in di�erent locations. Furthermore, connecting PEBL to
another computer in this way is a potential security risk. However, the ability to
transfer information between computers opens up huge potential for the types
of experiments that can be constructed.

4.18.2 Addresses and Ports

To do this, you �rst must open a network object to communicate with another
computer. To do this, you must know (1) the IP number (like 127.0.0.1) or
hostname (like myname.myschool.edu) of the computer you want to connect to,
and (2) the port you want to connect on. You can even use the protocol to

37

Chapter 4. Overview of Object Subsystems

connect to another program running on your own computer, by specifying an
IP address of 127.0.0.1, or the hostname �localhost�. A port is a number�usually
2 to 5 digits, specifying a type of service on your computer. Many ports are
frequently used for speci�c types of communication, but you can use any port
you wish to communicate, as long as both computers know this port. Most
ports on your computer should be blocked by default, so you may need to turn
o� your �rewall or allow your chosen port to pass through the security or you
may have trouble communicating.

To allow two PEBL programs to communicate, you need to decide that one com-
puter is the �server� and the other is the �client�. On the server, you execute
the function WaitForNetworkConnection(port), which listens on the speci�ed
port until the client tries to connect. After the server is started, the client
calls ConnectToHost(hostname, port) or AcceptNetworkConnection(port)

ConnectToIP(ipnum, port), depending upon whether you are using the host-
name or ip address. Typically, ip numbers are speci�ed by four three-digit
numbers separated by dots, like 196.168.0.1. This actually represents a 4-byte
integer, and this 4-byte integer is what ConnectToIP() expects. To create that
integer, use the function
ConvertIPString(ipnum), which accepts an IP address speci�ed in a string.
So, you can use:
net <- ConnectToIP(ConvertIPString("127.0.0.1"), 1234)

to create a connection to another program listening on port 1234 on your own
computer. These functions all return a network object (e.g., net) that must be
used in later communication.

4.18.3 Sending and Receiving Data

Once connected, the distinction between client and server essentially disap-
pears. However, to communicate, one computer must send data with the
SendData(net, data), and the other must receive the data, using the
GetData(net, size) function. PEBL can only send text strings, and you must
know the length of the message you want to receive. More complex communica-
tion can be done by creating a set of PEBL functions that encapsulate messages
into text strings with templated headers that specify the message length. Then,
to receive a message, you �rst read the �xed-length header, determine how much
more data needs to be read, then read in the rest of the data.

4.18.4 Closing networks

If you are using a network connection to synchronize timing of two computers,
you probably want to close the network connection with
CloseNetworkConnection(net) after you have synchronized, to avoid any extra
overhead.

A simple example of an experiment that uses TCP/IP to communicate is the
NIM game in demo/nim.pbl.

38

Chapter 4. Overview of Object Subsystems

4.19 Parallel Port
Starting with Version 0.12, PEBL can send and receive information via a stan-
dard parallel (printer) port. These don't appear on many computers anymore,
but you can still get them, and they are still important ways to interface with
hardware devices such as EEG and MRI machines and homebrew button boxes.
Currently, parallel port access is fairly limited to setting and getting the state
of the 8 data bits. Parallel ports have a number of bits you can play with, but
currently PEBL only supports the basic 8 data bits. Basically, you can set the
state of the bits or read the state of the bits, which can either control things
like LEDs, or be impacted by making connections between the ground and the
data bit.
If you have a parallel port, it is mapped to one of three ports: LPT1, LPT2, or
LPTX. To initialize access to a port, you must call OpenPPort with the name
of your port: "

port <- OpenPPort("LPT1")

Parallel ports have two modes, input and output. To read data in, it
needs to be in input mode; to change the state of the bits, it needs to
be in output mode. Set the state with SetPPortMode(port,"<input>") or
SetPPortMode(port,"<output>").
To access the state of a port, use GetPPortState(port). It will return a string
of "|" separated 1s and 0s, which specify the state of each of the 8 bits.
To set the state of the port, use SetPPortState(port,state). state should be
a list of 8 0s or 1s:
SetPPortState(port, [0,0,0,0,0,0,0,1])
The internal c++ parallel port classes have substantially more �exibility, and
can be adapted to do more complex access of parallel ports.

4.20 Serial Port

A number of devices are supported via the comport (serial port) library. This
can include newer USB devices that simulate a comport.
The following functions are relevant:

� OpenCOMPort(portnum,baud,mode)

� COMPORTSENDBYTE(port,message)

� COMPORTGETBYTE(port)

The general process is to use OpenComPort to create the port, and then send
and receive text strings from that port. These are sent one byte at a time. The
mode argument is a 3-character string that speci�es aspects of the mode (see
Teunis van Beelen's rs232 library at http://www.teuniz.net/RS-232/. The
�rst character is the data bits (5,6,7 or 8), parity (n=none, e=even, o=odd),
and the third is the stop bit (1 or 2 bits).
Within the demo directory, there is some basic code for communicating with the
cedrus response box that uses these functions. In addition, that script provide

39

http://www.teuniz.net/RS-232/

Chapter 4. Overview of Object Subsystems

a NumToASCII() function that can be useful in translating numbers to strings
to communicate with a device.

4.21 The Event Loop

To assist in testing for multiple input events simultaneously, PEBL implements
an event loop that will quickly scan multiple conditions and execute proper
results whenever any one condition is met.

The event loop works by maintaining a list of triggers that can be satis�ed
by various conditions. The conditions typically specify a device or other data
source to examine, such as the timer. On each cycle of the loop, all events are
examined, and when any of them are satis�ed, either a speci�ed function will
be executed, or the event loop will exit. Most of the timing and input functions
use the event loop behind the scenes.

As of Version 0.12, simple means to program the event loop are available. Three
functions include:

� RegisterEvent(). This allows you to specify a condition and a function
name which executes whenever the condition is true.

� StartEventLoop(). This starts the event loop, with all available events.

� ClearEventLoop(). This clears out the event loop so other events can be
used.

Note that because other functions, such as Wait(), use the event loop, you can
pre-load extra events and start the event loop with one of these functions.

These are used in a number of test battery tasks. However, their use is currently
somewhat experimental, and their names and arguments may change in the
future, and so we will not provide a detailed description of their use here.

4.22 Parameter Setting
PEBL o�ers an interface to set a large set of experimental parameters from
a text �le. Furthermore, the PEBL launcher allows you to edit and save new
parameter sets. This allows you to create common versions of a test that you
call, without editing the PEBL script.

The PEBL parameter system is based on a custom object created with the
CreateParameters() function. To use this, it requires you to set default pa-
rameters (in case the parameter �le is not found or damaged). Create default
parameters as a nested list containing property-value pairs. For example:

parameterpairs <- [["length",10],

["trialsperblock",15],

["numblocks",3]]

If you want to override these values, create a text �le (typically saved in the
params folder with the extension .par) that contains comma-separated values
parname,value, like this:

40

Chapter 4. Overview of Object Subsystems

length,5

trialsperblock,25

numblocks,5

Then, create a parameter object using CreateParameters:

gParams <- CreateParameters(pairlist, filename)

Any values in the .par �le will override the values in the default list. PEBL tries
to convert text values to numbers, and the value will be a number whenever
the round-trip from text-to-number-to-text does not change the original value.
Thus, avoid using �oating-point values for parameters, and you may need to
write �0.1� instead of �.1� if you do.
The PEBL launcher o�ers a way to set parameters. To do so, it needs more in-
formation, including the default values and a description. It looks for a .schema
�le in the params folder with the same name as the experiment. This �le uses the
| character to separate �eld (this allows you to use commas in the description):

length|10|The number of words per trial

trialsperblock|15|Trials in each block

numblock|3|Number of blocks.

Notice that quotes are not used in these �les. The values in this �le are ONLY
relevant to the PEBL launcher. These are used to reset the values in a .par �le
or tell the experiment what typical values are. They can di�er from the default
values in the .pbl �le, but for clarity they should not.

4.23 Errors and Warnings

PEBL does a great deal of error-checking to ensure that your program will run.
If you crash with a segmentation fault, this is an error and you should report
it. When a fatal error or non-fatal warning occurs, PEBL attempts to identify
the location in your input �le that led to the warning. On Linux, the warning
and this location are printed to the command-line upon exit; on MS Windows
or if you are using the launcher on any platform, they are printed to the �le
stderr.txt. In addition, when a fatal error is signalled, a dialog box will appear
that displays the main message, after which PEBL will shut down.
You can do error checking in your own scripts with the SignalFatalError()

function. This is especially useful in combination with the functions testing the
type of object passed into the function. To ensure proper processing and ease
of debugging, test the format of an argument passed into a function:
define MyFunction(par)

{

if(not IsList(par))

{

SignalFatalError("MyFunction passed a non-list variable.")

}

41

Chapter 4. Overview of Object Subsystems

##Do other stuff here

}

Sometimes, you want to exit a program at a speci�c point, but don't want the
error message dialog box to appear. You can use the ExitQuietly(<message>)
function to do this.

4.24 Paths and Path Searching

Numerous functions and objects open �les on your computer to read in infor-
mation such as graphics, sounds, fonts, program �les, and text �les. When you
attempt to open a �le, PEBL will search in a number of places, in this order:

� The (current) working directory

� The directory of each �le speci�ed in the command line arguments

� media/fonts

� media/sounds

� media/images

� media/text

You can also specify other paths to be searched by specifying them on the
command line. Be sure to end the directory with whatever is appropriate for
your platform, e.g. `\' on Microsoft Windows or `/' on Linux.
On OSX, as of version 0.12, the media/ directory is located within the Re-
sources/ subdirectory of the application package.

4.25 Controlling the Video settings
As part of PEBL 2.0, PEBL now uses hardware-accelerated graphics subsystems
that permit better and more accurate control of the video system. For the most
part, this should operate transparently, but the aspects of the video system
can be controlled both by command-line arguments and can be overridden
within a script using special global variables. The launcher works by using
command-line arguments, but these can always be overridden within a script.
For the most part, these global variables must be set before a MakeWindow()

function is called. The video system has several distinct aspects:

4.25.1 Screen resolution

By default, the window will open up the same size as the current window.
However, you can specify a speci�c resolution using the pulldown menu of the
launcher, which also allows you to specify a custom screen size. This is most
useful if you are debugging or running on a multi-screen setup. Regardless
of what the speci�ed screen resolution speci�ed in the launcher, the selected
screen resolution will be speci�ed using the gVideoWidth and gVideoHeight

global parameters, stores the speci�ed values in pixels.

42

Chapter 4. Overview of Object Subsystems

4.25.2 Fullscreen mode

When you are testing a script, you usually want it run in a window so you
can more easily cancel the script or edit parameter values. When testing, you
usually want to run in fullscreen mode because it will help prevent participants
from trying to do other things on the computer. This is controlled with the
�fullscreen and �windowed command line parameters, which is settable using
the fullscreen checkbox in the launcher.

4.25.3 Video drivers

Depending on the platform, di�erent graphics drivers may be available. The
launcher tries to determine the available drivers and gives options of these in
a drivers pulldown menu. These will typically include opengl and software.
On windows, a direct3d option should be available; on linux, opengles may be
available as well. Depending on your operating system, drivers, and hardware,
you may have more or less success with one or another of the available drivers.
The software driver is a fallback that should work if hardware drivers are causing
troubles. The vsync option will only be available on a hardware-accelerated
driver, such as opengl and direct3d.

4.25.4 Synchronize to vertical refresh signal (vsync)

For hardware-accelerated drivers, you are able to synchronize the Draw() func-
tions to the blank between each screen refresh. On a typical 60-hz LCD screen,
this means that the screen will refresh (roughly) every 16.67 ms. This is set
within the launcher, which using the �vsyncon argument. It can be examined
or overridden within a script by using the gVSync function (setting to 1 for on
or 0 for o�). This allows you to have very precise control over the timing of
video stimuli.
When vsync is on, the Draw() command will block until the video update has
happened. This gives you (typically) roughly 15 ms to perform any updating
you need to do, but sometimes this is not enough, and you take care to record
the presentation timing if you are relying on video display timing, to ensure you
are getting the timing you are hoping for.
The test �le in demo/tests/testrefresh.pbl will test the e�ective update fre-
quency you are achieving with your current video settings.

4.25.5 Multiple windows

You can open multiple windows simply by calling the MakeWindow() function
more than once. The window dimensions will be taken directly from the values
of gVideoWidth
Multiple Windows PEBL can open multiple windows for testing. This can be
useful if you want to have separate screens for a subject and an experimenter.
You can open multiple windows by calling the MakeWindow() function more

43

Chapter 4. Overview of Object Subsystems

than once. If you do this, each window should be set to its own parameter. Any
Draw() command will update both windows.
For example, you can open a new window in several ways:

gWin <- MakeWindow()

Creates a window with the default (black) background, with the screen size
identical to gVideoWidthxgVideoHeight, which may have been speci�ed either
earlier in the script or by the launcher program.

gWin <- MakeWindow("Red")

This creates a window with a red background. Note that you can use any on of
hundreds of color names available.

color <- MakeColor("white")

gWin <- MakeWindow(color)

This creates a window with a speci�ed color object. This could allow you to
reuse the color object, or use a custom RGB color with MakeColorRGB().

gWin <- MakeColor("black",300,300)

Here, the dimensions of the window are optionally fed into the MakeWindow()
function.
Support for multiple windows is currently experimental. For example, mouse
and keyboard events don't currently tell you which window they occurred on,
although this will be possible in the future.
Although the gVideoWidth and gVideoHeight global variables are still available,
these won't necessarily match any particular window if you create a window with
the last method above. Thus, you can get the screen size of any window using
the .width and .height arguments of the window.

4.26 StickyKeys
On Windows, there are several hidden control options that are useful for users
with limited mobility or dexterity. These include stickykeys�for keys such as
the shift key, control key, etc. clicking on them will latch them down (like
shift-lock), so that they can be used without touching both keys at once. By
default in many versions of Windows, clicking the left shift key �ve times in a
row will bring up the dialog to turn on/o� stickykeys.
Unfortunately, many of the PEBL tests use left/right shift keys as default man-
ual entry keys. So, the �rst time you run a test, it will pop up the dialog in the
middle of the test asking you whether you want to turn on stickykeys. If this
happens, you should generally go to the control panel and turn this o�.
As of 2.0, PEBL will disable this option. This means that if you want to use the
left-shift shortcut to start stickykeys, you may be out of luck�especially within
the test. There are ways to turn it back on again automatically, and future

44

Chapter 4. Overview of Object Subsystems

versions of PEBL may attempt to do this, but currently it turns o� when PEBL
runs.

4.27 Provided Media Files

PEBL comes with various media �les that can be speci�ed from any script
without including the complete path. If a user's �le has the same name, it
will be loaded before the PEBL-provided version. Table 4.2 describes the �les
included.

Table 4.2: Media Files Provided with PEBL

Name Description

In `media/fonts/':

Listing of fonts appears in Table 4.1

In `media/images/':

pebl.bmp Demonstration bitmap image
pebl.png Demonstration PNG image
pebl2.png PEBL2 logo
smiley-small.png 25x25 smiley face
frowney-small.png 25x25 frowney face
smiley-large.png 100x100 smiley face
frowney-large.png 100x100 frowney face
plus.png A green plus sign
x.png A red x sign, matching the red plus

In `media/sounds/':

buzz500ms.wav A 500-ms buzzer
chirp1.wav A chirp stimulus
boo.wav A really bad booing sound
cheer.wav A pretty lame cheering sound
beep.wav A simple beep
boo.wav Boo�useful for errors
cheer.wav A cheer-useful for correct feedback
kaching.wav Sound of a coin in a jar
knock.wav simple knocking/click sound
0.wav through 9.wav Recording of numerals, used in digit span and others
correct.wav correct feedback
incorrect.wav Incorrect feedback
H,R,N,K,X,Y,W.wav Female voice letters for n-back

45

Chapter 4. Overview of Object Subsystems

Name Description

In `media/text/':

Consonants.txt List of all consonants, both cases
Digits.txt List of digits 0-9
DigitNames.txt List of digit names
Letters.txt All letters, both cases
Lowercase.txt Lowercase letters
LowercaseConsonants.txt Lowercase Consonants
LowercaseVowels.txt Lowercase Vowels
Uppercase.txt Uppercase Letters
UppercaseConsonants.txt Uppercase Consonants
UppercaseVowels.txt Uppercase Vowels
Vowels.txt Vowels (both cases)

Additionally, the PEBL Project distributes a number of other media �les sepa-
rately from the base system. These are available for separate download on the
pebl website (http://pebl.sourceforge.net), and include a set of images (includ-
ing shapes and sorting-task cards), and a set of auditory recordings (including
beeps, the digits 0-10, and a few other things).

4.28 Special Variables

There are a number of special variables that be set by PEBL, and can later be
accessed by an experiment. These are described in table 4.3.

46

Chapter 4. Overview of Object Subsystems

Table 4.3: Special Variables in PEBL

Name Purpose

gKeepLooping Controls continued execution in event loop (unused).

gSleepEasy Sets 'busy-waiting' to be either on or o�.
Busy-waiting can improve timing, but is often
not needed and pegs CPU.

gVideoWidth The width in pixels of the display (set by
default or command-line option). Changing
this before calling MakeWindow will change
display width, if that width is available.

gVideoHeight The height in pixels of the display (set by
default or command-line). Change this before using
MakeWindow() to change the display height

gVideoDepth The bit depth of the video.

gSubNum A global variable set to whatever follows the --s or
--S command-line argument. Defaults to �0�.

gScriptName Speci�es the name on the window, and some printed output.
gVSync Determines whether script should be run with vsync on
gLanguage A global variable speci�ed on the command line

which can be used by a script to target a speci�c
language. Defaults to 'en'.

gQuote A quotation mark: ". Use it to add quotes in text.
gClick [x,y] location last click in WaitForClickOnTarget.
gPEBLBaseFont Name of the default font to use in helper functions

and most battery tasks. By default, set to
�DejaVuSans.ttf�. Change to override.

gPEBLBaseFontMono Name of the default mono-spaced font
By default, it is set to �DejaVuSansMono.ttf�.

gPEBLBaseFontSerif Name of the default serif font.
By default, it is set to �DejaVuSerif.ttf�.

47

Chapter 4. Overview of Object Subsystems

48

Chapter 5

Function Quick Reference

Table 5.1 lists the functions available for use with PEBL. Those that are unim-
plemented are noted as such. If you want the functionality of an unimplemented
function, or want functionality not provided in any of these functions, contact
us, or better yet, contribute to the PEBL project by implementing the function
yourself.

Table 5.1: Function Quick Reference

Name Arguments Description

Math Functions

Log10 <num> Log base 10 of <num>
Log2 <num> Log base 2 of <num>
Ln <num> Natural log of <num>
LogN <num> <base> Log base <base> of <num>
Exp <pow> e to the power of <pow>
Pow <num> <pow> <num> to the power of <pow>
Sqrt <num> Square root of <num>
NthRoot <num> <root> <num> to the power of 1/<root>
Tan <deg> Tangent of <deg> degrees
Sin <deg> Sine of <deg> degrees
Cos <deg> Cosine of <deg> degrees
ATan <num> Inverse Tan of <num>, in degrees
ASin <num> Inverse Sine of <num>, in degrees
ACos <num> Inverse Cosine of <num>, in degrees
DegToRad <deg> Converts degrees to radians
RadToDeg <rad> Converts radians to degrees
Round <num>, (optional)

<precision>

Rounds <num> to nearest integer, or op-
tionally power of 1/ten precision.

Floor <num> Rounds <num> down to the next integer
Ceiling <num> Rounds <num> up to the next integer

49

Chapter 5. Function Quick Reference

Name Arguments Description

AbsFloor <num> Rounds <num> toward 0 to an integer
Mod <num> <mod> Returns <num>mod <mod> or remainder

of <num>/<mod>
Div <num> <mod> Returns round(<num>/<mod>)
ToInteger <num> Rounds a number to an integer, and

changes internal representation
ToFloat <num> Converts number to internal �oating-

point representation
ToNumber <>

ToString <num> Converts a numerical value to a string
representation

Sign <num> Returns +1 or -1, depending on sign of
argument

Abs <num> Returns the absolute value of the num-
ber

CumNormInv <p> Returns accurate numerical approxima-
tion of cumulative normal inverse.

NormalDensity <x> Returns density of standard normal dis-
tribution.

SDTDPrime <hr>,<far>,<opt:tol>Computes SDT dprime.
SDTBeta <hr>,<far>,<opt:tol>Computes SDT beta.
Order <list> Returns a list of integers representing

the order of <list>
Rank <list> Returns integers representing the

ranked indices of the numbers of<list>
Median <list> Returns the median value of the num-

bers in <list>

Min <list> Returns the smallest of <list>
Max <list> Returns the largest of <list>
Bound <val>, <min>,

<max>

Returns val, bounded by min and max.

StDev <list> Returns the standard dev of <list>
Sum <list> Returns the sum of the numbers in

<list>

Median <list> Returns the median of a set of values
Quantile <list> <num> Returns the <num> quantile of the num-

bers in <list>

SummaryStats <data>,<cond> Returns statistics (cond, N, median,
mean, sd) computed on data for each
distinct value of <cond>

SeedRNG <num> Seeds the random number generator
with <num> to reproduce a random se-
quence

50

Chapter 5. Function Quick Reference

Name Arguments Description

RandomizeTimer - Seeds the RNG with the current time
Random - Returns a random number between 0

and 1
RandomDiscrete <num> Returns a random integer between 1

and <num>

RandomUniform <num> Returns a random �oating-point num-
ber between 0 and <num>

RandomNormal <mean> <stdev> Returns a random number according to
the standard normal distribution with
<mean> and <stdev>

RandomExponential <mean> Returns a random number according
to exponential distribution with mean
<mean> (or decay 1/mean)

RandomLogistic <p> Returns a random number according to
the logistic distribution with parameter
<p>

RandomLogNormal <median> <spread> Returns a random number according
to the log-normal distribution with pa-
rameters <median> and <spread>

RandomBinomial <p> <n> Returns a random number according to
the Binomial distribution with proba-
bility <p> and repetitions <n>

RandomBernoulli <p> Returns 0 with probability (1-<p>)

and 1 with probability <p>

ZoomPoints <[xs,yy]>,
<xzoom>, <yzoom>

Zooms a set of points in 2 directions

ReflectPoints <[xs,yy]> Re�ects points on vertical axis
RotatePoints <[xs,yy]>,<angle> Rotates point <angle> degrees
GetAngle <x>,<y> Returns the angle in degrees of a vector.
Dist <x1,y1>,<[x2,y2]> Returns distance between two points.
ToRight <p1,p2,p3> Determines whether p3 is te the right

of line p1p2
GetAngle3 <a,b,c> Gets angle abc.
SegmentsIntersect <ax,ay,bx,by,cx,cy,dx,dy>

Determines whether line segment ax in-
tersects cd.

NonOverlapLayout <xmin,xmax,ymin,ymax,tol,num>

Creates a set of num points that don't
overlap, but fails gracefully

LayoutGrid <minx,maxx,miny,maxy,height,width,vertical>

Creates [x,y] pairs in a grid for graphi-
cal layout

51

Chapter 5. Function Quick Reference

Name Arguments Description

File/Network/Device Functions

Print <value> Prints <value> to stdout, appending a
new line afterwards. stdout is the con-
sole (in Linux) or the �le stdout.txt

(in Windows)
Print_ <value> Prints <value> to stdout, without ap-

pending a newline afterwards
PrintList <value> Prints <list>, getting rid of '[', ']' and

',' characters.
Format <object> <size> Prints a number with speci�ed spaces

by truncating or padding
ZeroPad <number> <size> Pads the beginning of a number with 0s

so the number is size long
FileOpenRead <filename> Opens a �lename, returning a stream to

be used for reading information
FileOpenWrite <filename> Opens a �lename, returning a stream

that can be used for writing informa-
tion. Creates new �le if �le already ex-
ists

FileOpenOverwrite <filename> Opens a �lename, returning a stream
that can be used for writing informa-
tion. Overwrites if �le already exists

FileOpenAppend <filename> Opens a �lename, returning a stream
that can be used for writing info. Ap-
pends if the �le already exists, opens if
�le does not

FileClose <filestream> Closes a �lestream variable. Pass the
variable name, not the �lename

FilePrint <filestream>

<value>

Like Print, but to a �le.

FilePrint_ <filestream>

<value>

Like Print_, but to a �le.

FilePrintList <file><list> Prints <list> to <file>, getting rid of
'[', ']' and ',' characters.

FileReadCharacter <filestream> Reads and returns a single character
from a �lestream

FileReadWord <filestream> Reads and returns a `word' from a �le;
the next connected stream of characters
not including a ' ' or a newline. Will
not read newline characters

52

Chapter 5. Function Quick Reference

Name Arguments Description

FileReadLine <filestream> Reads and returns a line from a �le; all
characters up until the next newline or
the end of the �le

FileReadList <filename> Given a �lename, will open it, read in
all the items into a list (one item per
line), and close the �le afterwards

FileReadTable <filename>

<opt-sep>

Like FileReadList, but reads in tables.
Optionally, specify a token separator

GetNewDatafile <id-code>,<window>,
<basename>,
<extension>,
<header>

Opens a data �le in subnum directory

ReadCSV <filename> Opens a csv �le< returning a table with
its elements

FileReadText <filename> Reads all of the text in the �le into a
variable

EndOfLine <filestream> Returns true if at end of line
EndOfFile <filestream> Returns true if at the end of a �le
GetDirectoryListing

<path> Returns a list of all the
�les/subdirectories in a path

FileExists <path> Checks whether a �le exists
IsDirectory <path> Checks whether a �le is a directory
MakeDirectory <path>,<dirname> Creates a directory in path
AppendFile <file1> ,<file2> Appends a �le2 to �le1
CopyFile <file>,<newfile> Makes a copy of a �le
DeleteFile <file1> Deletes a �le
ConnectToIP <ip> <port> Connects to a port on another com-

puter, returning network object.
ConnectToHost <hostname>

<port>

Connects to a port on another com-
puter, returning network object.

WaitForNetworkConnection

<port> Listens on a port until another com-
puter connects, returning a network ob-
ject

CloseNetworkConnection

<network> Closes network connection
SendData <network>

<datastring>

Sends a data string over connection.

GetData <network>

<length>

return a string from network connection

ConvertIPString <ip-as-string> Converts an ip-number-as-string to us-
able address

53

Chapter 5. Function Quick Reference

Name Arguments Description

OpenNetworkListener

<port> Opens a port for listening
CheckForNetworkConnection

<network> Checks for incoming connection
GetHTTPFile <server>, <file>,

<outputfile>

Gets and saves a �le from a website

GetHTTPText <server>,
<file>

Gets a �le from a website and saves it
to a variable.

PostHTTP <host>,<page>,
<headers>,
<content>,

Post to a server form.

MD5Sum <text> Computes MD5 checksum on text
MD5File <filename> Computes MD5 Checksum on �le.
WritePNG <filename>,

<object>

Makes a .png from a window or object

GetNumJoysticks no argument Determines how many joysticks are
available

OpenJoystick joystick_id Gets a joystick object
GetNumJoystickAxes joystick_object Counts how many axes on a joystick
GetNumJoystickBalls

joystick_object Counts how many balls on a joystick
GetNumJoystickButtons

joystick_object Counts how many buttons on a joystick
GetNumJoystickHats

joystick_object Counts how many hats on a joystick
GetJoystickAxisState

joystick_object,
axis_id

Gets the state of a joystick axis

GetJoystickHatState

joystick_object,
hat_id

Gets the state of a joystick hat

GetJoystickButtonState

joystick_object,
button_id

Gets the state of a joystick button

GetJoystickBallState

joystick_object,
ball_id

Gets the state of a joystick ball

OpenCOMPort <portnum>, <baud> Opens a serial (com) port
COMPortGetByte <port> Gets a byte from the comport
COMPortSendByte <port>,<byte> Sends a character to the comport
OpenPPort <portname> Opens parallel port
SetPPortMode <port> <mode> Sets parallel port mode (input/output)
SetPPortState <port> <state> Sets parallel port state

54

Chapter 5. Function Quick Reference

Name Arguments Description

GetPPortState <port> Gets state of parallel port data bits

Graphical Objects Functions

MakeWindow opt:<colorname> ,
opt:<width>,opt:<heigth>Creates main window, in color named

by argument, or grey if no argument is
named

MakeImage <filename> Creates an image by reading in an im-
age �le (jpg, gif, png, bmp, etc.)

MakeLabel <text> Creates a single line of text �lled with
<text> written in font

MakeTextBox <text> Creates a sized box �lled
<width> <height> with <text> written in font

MakeCanvas <width>,

<height>,

Creates a blank canvas

<color> to add objects to or draw on
ResetCanvas <canvas> Resets a canvas to its background, eras-

ing anything drawn on the canvas
EasyLabel <text> <x><y>

<win><fontsize>

Creates a single line of text and adds it
to win at <x><y>

EasyTextBox <text> <x> <y>

<win> <fontsize>

<width> <height>

Creates a textbox and adds it to <win>

at <x><y>

MakeColor <colorname> Creates a color based on a color name
MakeColorRGB <red> <green>

<blue>

Creates a color based on red, green, and
blue values

RGBToHSV <color> Converts a color to HSV triple
MakeFont <ttf_filename>

<style> <size>

<fgcolor>

<bgcolor>

<anti-aliased>

Creates a font which can be used to
make labels

SetCursorPosition

<textbox>

<position>

Move the editing cursor in a textbox

GetCursorPosition

<textbox> Gets the position of the editing cursor
GetAbsolutePosition<widget> Gets the absolute window position of a

widget
SetEditable <textbox>

<status>

Turns on or o� the editing cursor

GetTextBoxCursorFromClick

55

Chapter 5. Function Quick Reference

Name Arguments Description

<relx>,<rely> Gets a cursor position (in characters)
from a mouse click.

GetText <textobject> Returns the text in a textbox or label
GetInput <textbox>

<escape-key>

Allows a textbox to be edited by user,
returning its text when <escape-key>

is pressed.
SetText <textobject>,

<text>

Sets the text in a textbox or label

SetFont <textobject>,

Changes the font of a text object

Move <object> <x> <y> Move an object (e.g., an image or a label
to an x,y location)

MoveCorner <object> <x> <y> Moves an image or label by its upper
corner.

GetSize <object> Returns a list of dimensions <x,y> of a
graphical object.

GetLineBreaks <textbox> Computes the line breaks for a textbox
text.

GetParent <widget> Gets the parent widget of a widget.
AddObject <object>

<parent>

Adds an object to a parent object (win-
dow)

RemoveObject <object>

<parent>

Removes an object from a parent win-
dow

RemoveObjects <list-of-objects>

<parent>

Removes a (possibly nested) list of ob-
jects from a parent window

Show <object> Shows an object
Hide <object> Hides an object
ShowCursor <object> Hides or show mouse cursor.
GetMouseCursorPosition Gets [x,y] position of mouse
GetMouseState Gets [x,y,b1,b2,b3] list of mouse state,

including button states
SetMouseCursorPosition

<x>,<y> Sets x,y position of mouse
Draw <object> or no ar-

gument
Redraws a widget and its children

DrawFor <object>

<cycles>

Draws for exactly <cycles> cycles,
then returns

Circle <x> <y> <r>

<color> <filled>

Creates circle with radius r centered at
position x,y

Ellipse <x> <y> <rx>

<ry><color>

<filled>

Creates ellipse with radii rx and ry cen-
tered at position x,y

56

Chapter 5. Function Quick Reference

Name Arguments Description

Square <x> <y> <size>

<color> <filled>

Creates square with width size centered
at position x,y

Rectangle <x> <y> <dx>

<dy><color>

<filled>

Creates rectangle with size (dx, dy)
centered at position x,y

Line <x> <y> <dx> <dy>

<color>

Creates line starting at x,y and ending
at x+dx, y+dy

Polygon <x> <y> <xpoints>

<ypounts>

<color><filled>

Creates polygon centered at x,y with
relative points <xpoints>,<ypoints>

Bezier <x> <y> <xpoints>

<ypoints>

<steps> <color>

Creates bezier curve centered at x,y
with relative points

BlockE <x> <y> <h> <w>

<thickness>

<orientation>

<color>

Creates a block E as a useable poly-
gon which can be added to a window
directly.

Plus <x> <y>

<size> <w>

<color>

Creates a plus sign as a useable poly-
gon which can be added to a window
directly.

MakeStarPoints <r_outer>

<r_inner>

<npeaks>

Creates points for a star, which can
then be fed to Polygon

MakeNGonPoints <radius>

<npeaks>

Creates points for a polygon, which can
then be fed to Polygon

ThickLine <x1> <y1> <x2>

<y2> <thickness>

<color>

Creates a thick line between two points

MakeAttneave <radius>,
<numpoints>,
<minangle>,
<maxangle>

Makes a complex �Attneave� polygon
ConvexHull <list-of-pts> Returns a convex subset of points for a

set
KaneszaSquare <squaresize>,

<circleradius>,
<fg>, <bg>

Creates a 'Kanesza Square' stimulus.

KaneszaPolygon <points>,
<circTF>,
<circleradius>,
<fg>, <bg>,<show>

Create generic Kanesza polygon.

57

Chapter 5. Function Quick Reference

Name Arguments Description

Inside <[x,y]> <object> Determines whether a point is inside a
graphical object

SetPixel x,y,color Sets the color of a pixel on an image or
canvas to color

SetPoint x,y,color Sets the color of a pixel on an image or
canvas to color

GetPixelColor <obj>,x,y Gets the color of a speci�ed pixel on a
widget

MakeGabor <size>, <freq>,
<sd>, <angle>,
<phase>, <bglev>

Creates a 'gabor patch' with speci�ed
parameters

Sound Objects Functions

LoadSound <filename> Loads a sound�le from the �lename, re-
turning a variable that can be played

PlayForeground <sound> Plays the sound `in the foreground', not
returning until the sound is complete

PlayBackground <sound> Plays the sound 'in the background', re-
turning immediately

Stop <sound> Stops a sound playing in the back-
ground from playing

MakeSineWave freq,duration,amplitude
Creates a pure sine wave.

MakeAudioInputBuffer

<time-in-ms> Creates a bu�er to record audio input
SaveAudioToWaveFile

<filename>,<buffer>Saves bu�er to a .wav �le format
GetVocalResponseTime A simple voice key

<buffer>,<threshold>,<duration>
LoadMovie <movie_filename> Load a movie �le

<window>,<width>,<height>
LoadAudioFile <audio_filename> Load an audio �le
PlayMovie <movie> Plays a movie until its end
StartPlayback <movie> Initiates playback in background, up-

dated with Wait()
PausePlayback <movie> Pauses playback of movie

Graphical User Interface Functions

GetTime <> Gets a number, in milliseconds, repre-
senting the time since the PEBL pro-
gram began running.

MakeButton <label><x>,<y>
<win>,<width>

Makes a button for clicking on.

58

Chapter 5. Function Quick Reference

Name Arguments Description

PushButton <button><[x,y]> Pushes a button and releases.
MakeCheckBox <label><x>,<y>,

<win>,<width>
Makes a two-state checkbox on a button
background.

ClickCheckBox <checkbox><[x,y]> Handles checkbox click and updates
state.

SetCheckBox <checkbox><state> Sets checkbox state.
MakeScrollingTextBox

<text>, <x>,
<y>, <win>,
<fontsize>,
<width>,
<height>,
<linewrap>

Make a box for text that can be scrolled
if too long.

SetScrollingText <obj><text>,
<linewrap>

Changes text of a scrolling textbox.

MakeScrollBox <opts>, <header>,
<x>, <y>,
<win>,<fontsize>,
<width>,
<height>,
<selected>

Make a scrolling selection box.

UpdateScrollBox <obj> Recalculates scrollbox layout.
DrawScrollBox <obj> Draws a scrollbox.
ClickOnScrollBox <obj>, <click> Handles click on scrollbox.
PopuUpMessageBox <label><win> Makes a small message box at the

mouse location.
PopuUpEntryBox <label><win><[x,y]>Makes a small entry box at [xy] loca-

tion.
MakePullDown <optionlist>,

<x>,<y>, <win>,
<fontsize>,
<width>,
<selected>,

Make a pulldown selection box for a list.

PullDown <obj><[x,y]> Handle click on a pulldown.
UpdatePullDown <obj>, <newlist> Updates the list of a pulldown.
DrawPullDown <obj> Redraws a pulldonw if state changes.
MakeTextlist <list>,

<listoffset>,
<prebuffer>

Creates a text body from a list.

InsideTB <[xy]><obj> Determine inside for a textbox-style ob-
ject (location is upper left)

59

Chapter 5. Function Quick Reference

Name Arguments Description

MakeMenu <header>, <x>,
<y>, <win>,
<fontsize>,
<width>,
<subitems>,
<functions>

Creates menu with suboptions.

MakeMenuItem <text>, <x>,
<y>, <win>,
<fontsize>,
<width>,
<function>

Creates menu sub-item.

ClickOnMenu <obj>, <[x,y]> Handles menu click, calling the .clickon
function of menu.

OpenSubMenus <obj>, <[x,y]> Opens the sub-menus of a menu.

Custom and Built-in Object Functions

VariableExists <variable-name> Tests whether a variable exists.
PrintProperties <object> Prints a list of all available properties

of an object (for debugging)
GetPropertyList <object> Gets a list of all the property names of

an object
PropertyExists <object> <prop> Determines whether a particular prop-

erty exists
SetProperty <object> <prop>

<value>Sets prop-
erty of an object

GetProperty <object> <prop> Returns value of property
MakeCustomObject <name> Creates custom object.
IsCustomObject <object> Tests whether object is a custom object.
DrawObject obj Calls the .draw property of an object
MoveObject obj, x, y Calls the .move property of an object
Clickon obj, [x,y] Calls the .clickon property of an object

Misc Event Functions

GetTime <> Gets a number, in milliseconds, repre-
senting the time since the PEBL pro-
gram began running.

Wait <time> Pauses execution for <time> ms
IsKeyDown <keyval> Determines whether the key associated

with <keyval> is down
IsKeyUp <keyval> Determines whether the key associated

with <keyval> is up
IsAnyKeyDown <> Determines whether any key is down.

60

Chapter 5. Function Quick Reference

Name Arguments Description

WaitForKeyDown <keyval> Waits until <keyval> is detected to be
in the down state

WaitForAnyKeyDown <> Waits until any key is detected in down
state

WaitForKeyUp <keyval> Waits until <keyval> is in up state.
WaitForAllKeysUp Waits until all keys are in up state
WaitForAnyKeyDownWithTimeout

<time> Waits for a key to be pressed, but only
for <time> ms

WaitForKeyListDown

<list-of-keyvals> Waits until one of the keys is in down
state

WaitForKeyPress <key> Waits until <key> is pressed
WaitForAnyKeyPress <> Waits until any key is pressed
WaitForKeyRelease <key> Waits until <key> is released
WaitForListKeyPress

<list-of-keys>

Waits until one of <list-of-keys> is
pressed

WaitForListKeyPressWithTimeout

<list-of-keyvals>

<timeout>

Waits for either a key to be pressed or
a time to pass.

WaitForMouseButton Waits until any of the mouse buttons
is pressed or released, and returns mes-
sage indicating what happened

WaitForMouseClickWithTimeout

<timeout>

Waits until any of the mouse buttons
is pressed, or a prespeci�ed timout has
elapsed.

WaitForClickOnTarget

<target> Waits until any of a set of target objects
are clicked.

WaitForClickOnTargetWithTimeout

<target>,
<timeout>

Waits with a max time for a set of tar-
gets to be clicked.

WaitForDownClick Waits for mouse button to be clicked
RegisterEvent <> Registers events to trigger based on par-

ticular conditions
StartEventLoop <> Starts the event loop
ClearEventLoop <> Clears all trigger events from event loop
SignalFatalError <message> Halts execution, printing out message
ExitQuietly <message> Halts execution, printing a message to

terminal but not a pop-up
TranslateKeyCode <> Converts a keycode to a key name

61

Chapter 5. Function Quick Reference

Name Arguments Description

TimeStamp Returns a string containing the current
date and time

GetPEBLVersion <> Returns a string indicating which ver-
sion of PEBL you are using

GetSystemType <> Identi�es the type of operating system
being used.

CopyToClipboard <text> Puts argument in system clipboard.
CopyFromClipboard <> Copies text from system clipboard.
GetVideoModes opt:<screen> Gets list of available screen resolutions
GetDrivers Gets a list of possible video drivers
GetCurrentScreenResolution<> Gets the current widthxheight of the

screen
SystemCall <command>

<optional-args>

Executes command in operating system

LaunchFile <file> Launches a �le using platform-speci�c
handlers

GetNIMHDemographics <code>

<window> <file>

Asks NIMH-related questions

GetSubNum <window> Asks user to enter subject number
MessageBox <text> <win> Pops up a message, overtop the entire

screen, and waits for a click to continue.
GetEasyInput <text> <win> Gets typed input based on a prompt.
GetEasyChoice <text>,

<choices>,
Simple multiple choice

<output>,
<window>

GetEasyMultiChoice <text>,
<choices>,

Simple select-multiple choice

<output>,
<window>,
<min>(opt),
<max>(opt)

CountDown <window> Displays a 3 2 1 countdown on screen
IsAudioOut <variant> Tests whether <variant> is a Au-

dioOut stream
IsCanvas <variant> Tests whether <variant> is a Canvas
IsColor <variant> Tests whether <variant> is a Color
IsFileStream <variant> Tests whether <variant> is a

FileStream
IsFloat <variant> Tests whether <variant> is a �oating-

point number
IsFont <variant> Tests whether <variant> is a Font
IsImage <variant> Tests whether <variant> is an Image

62

Chapter 5. Function Quick Reference

Name Arguments Description

IsInteger <variant> Tests whether <variant> is an integer-
type number

IsLabel <variant> Tests whether <variant> is a Text La-
bel

IsList <variant> Tests whether <variant> is a List
IsNumber <variant> Tests whether <variant> is a number
IsTextBox <variant> Tests whether <variant>is a TextBox
IsText <variant> Tests whether <variant> is a text

string
IsShape <variant> Tests whether <variant> is any draw-

ing shape, such as a circle, square or
polygon

IsString <variant> Tests whether <variant> is a string
IsWidget <variant> Tests whether <variant> is any Widget
IsWindow <variant> Tests whether <variant> is any Win-

dow

List Manipulation Functions

Shuffle <list> Returns a new list with the items in list
shu�ed randomly.

ShuffleRepeat <list> <times> Generates a list of n shu�ed versions of
<list>

ShuffleWithoutAdjacents

<nested-list> Shu�e specifying items that should not
appear adjacently

Repeat <item> <n> Repeats an item n times in a list
RepeatList <list> <n> Makes a new list containing the ele-

ments of <list> repeated <n> times
Sequence <start> <end>

<step>

Makes a sequence of numbers from
<start> to <end>, with <step>-sized
increments

ChooseN <list> <n> Returns a sublist of <n> items from a
list, in the order they appear in the orig-
inal list

Sample <list> Picks a single item randomly from
<list>.

SampleN <list> <n> Returns a randomly-ordered sublist of
<n> items from a list

SampleNWithReplacement <list>

<n>

Returns a sublist of <n> items from a
list

DesignLatinSquare

<list1> <list2>

LatinSquare <list> A simple latin square constructor

63

Chapter 5. Function Quick Reference

Name Arguments Description

DesignGrecoLatinSquare <list1> <list2> <list3>

DesignBalancedSampling <list> <number>

DesignFullCounterbalance <list1> <list2>

CrossFactorWithoutDuplicates <list> Returns a list of all pairs of items in
the list, excluding pairs that where an
element appears twice.

Rotate <list> <n> Rotates a list by <n> items.
FoldList <list> <n> Folds list into length-n sublists.
Flatten <list> Flattens a nested list completely
FlattenN <list> <n> Flattens n levels of a nested list
Length <list> Returns the number of elements in a

list.
First <list> Returns the �rst item in a list.
Last <list> Returns the last item in a list.
Merge <list1> <list2> Combines two lists.
Append <list> <item> Returns new list combining <list> and

<item>

PushOnEnd <list> <item> Adds <item> to <list> e�ciently
List <item1>

<item2>...

Makes a list out of items

Sort <list> Sorts a list by its values.
SortBy <list> <key> Sorts list by the values in <key>

Nth <list> <n> Returns the nth item in a list.
Subset <list>

<list-of-indices>

returns a subset of items from a list

SetElement <list>, <index>,
<value>

Sets an element of list to value

Match [list],<item> Returns a list of 0/1s, indicating which
elements of list match item.

Filter [list],<indicators>Filters a list based on a 0/1 list pro-
duced by Match.

Levels [list] Returns a sorted list of unique elements
in list.

Rest <list> Returns a list minus its �rst element
ExtractListItems <list>

<list-of-indices>

Gets a subset of items from a list

IsMember <item> <list> Checks whether <item> is a member of
<list>

Replace <template>

<replacementList>

Replaces items in a data structure

64

Chapter 5. Function Quick Reference

Name Arguments Description

Lookup <key> <keylist>

<database>

returns element in <database> corre-
sponding to element of <keylist> that
matches <key>.

Transpose <list-of-lists> Transposes a list of equal-length lists.
SubList <list> <start>

<finish>

Returns a sublist of a list.

RemoveSubset <list>

<list-of-pos>

Removes items at positions
<list-of-pos> from a list.

ConcatenateList <list>, <sep>(opt) Combines list
ListToString <list>,opt:<sep>,opt:<prebuffer>Concatenates all elements of a list into

a single string
+ModList+ & \verb<list>|,
<pre>, <post>

Adds pre- and post-
elements to each
list member

Insert <list>,<item>,<pos>Inserts <item> into <list> at <pos>
ListBy <list>,<conds> Segments a list into sublist by the val-

ues of a second list

String Management Functions

CR <num> Returns string with <num> linefeeds.
Tab <num> Returns string with <num> tabs.
Format <value> <num> Makes string from value exactly <num>

characters by truncating or padding.
Enquote <text> Returns string surrounded by quote

marks.
Uppercase <string> Returns uppercased string
Lowercase <string> Returns lowercased string
ReplaceChar <string> <char>

<char2>

Substitutes <char2> for <char> in
<string>.

SplitString <string> <split> Splits <string> into a list of <split>-
delimited substrings

SplitStringSlow <string> <split> Splits <string> into a list of <split>-
delimited substrings

StringLength <string> Returns the length of a string
SubString <string>

<position>

<length>

Returns a substring

FindInString <string> <key>

<pos>

Returns position of <key> in <string>,

65

Chapter 5. Function Quick Reference

Name Arguments Description

starting at position <pos>

StripSpace <string> Strips whitespace from the start and
end of <string>.

StripQuotes <string> Strips quotation marks from the start
and end of <string>.

66

Chapter 6

PEBL User Interface

Functions

As PEBL matured, there was a need to create a number of cross-platform tools,
including the launcher, the data combiner, a customized launcher, and the like.
Because PEBL is already a cross-platform toolkit, we decided to implement a
set of UI primitives to make this possible, within PEBL itself. These functions
are primarily de�ned in pebl-lib
UI.pbl. An example application using most of these graphical primitives is
provided in demo
ui-demo.pbl.

This chapter is a basic overview and tutorial for these functions. Many of these
functions are sort of secondary to the main functions related to experiment
design, and so in some cases they are not documented in the main reference
section.

6.1 Overview
The UI objects described here share a number of things in common. They are
'custom' objects with methods de�ned within the object, so that the Draw,
Move, Add, Remove, Clickon, and inside, functions will work directly on them,
overriding the base function names.

Thus, if you create an object, although it really is a data structure usually con-
taining various pieces of information and graphical output, you can use common
functions to interact with it:

button <- MakeButton("Buttonname",100,100,gWin,150)

AddObject(button,gWin)

Move(button,300,300)

Each object has an associated function called with the 'ClickOn' method that
handles a click on the object. It takes two arguments; the object itself, and the
xy mouseclick event. Thus, you can create a bunch of UI elements of di�erent

67

Chapter 6. PEBL User Interface Functions

types, then use a single loop to handle any event there. For example, if items
holds a list of graphical elements de�ned earlier:

cont <- 1

items <- [done,sb,check,pulldown,pulldown2,

testmessage,testentry,textscroll,

menu1,menu2,menu3,menu4]

while(cont)

{

resp <- WaitForClickOnTarget(items,

Sequence(1,Length(items),1))

obj <- Nth(items,resp)

CallFunction(obj.clickon,[obj,gClick])

Draw()

#Exit condition:

cont <- (resp>1)

}

Here, gClick holds the keypress event at the end of WaitForClickOntarget.

6.2 TextEntry
A textentry is a single-row text box that allows the user to enter text when they
click on it. It has a label that is above the text entry box (with unimplemented
layout parameter that in the future will let you change the layout). and its
property .value will contain the text entered. When one clicks on it, it will do
a standard text entry. One must hit enter to input the value, and nothing else
can happen until enter is clicked. If you want to set the value, you can use
SettextEntry().

6.2.1 Usage

te <- MakeTextEntry(label,x,y,win,width,defaultval)

6.2.2 Methods and related functions

Below is a list of functions related to TextEntry
MakeTextEntry(label,x,y,win,width,default,<opt>layoutCreates entry box

Clickon GetTextEntryInput(obj,event) Gets text-based input.
Inside InsideTB(obj,evt) Tests whether click is inside menu

SetTextEntry(obj,text) Sets the value manually

68

Chapter 6. PEBL User Interface Functions

6.3 Menu

A Menu appears as a labeled box, and when clicked on a set of options will
pull down to be clicked on. When one of this is clicked, a speci�ed function
will be executed. Often, you put these on the top of the screen in a menu bar,
which needs to be generated manually. See ui-demo.pbl in demo directory for
examples.

6.3.1 Usage

A menu is created as a set of MenuItems (which is hidden from the user.) Along
with specifying the location and text for the items, you need to specify function
names to be called when a target is clicked. When clicked, the function gets
called with (obj, click), so you can handle the drawing.

menu <- "FILE", 10,10,gWin,12,100,["Load","Save","Edit"],

"Loadfile","Savefile","Editfile"])

In the example above, a 'FILE' menu will be displayed. When clicked on,
subitems 'Load', 'Save', and 'Edit' will appear, which will execute the functions
'Load�le', 'Save�le', and 'Edit�le'.

6.3.2 Methods and related functions

Below is a list of functions related to menu creation. The main menu uses a
sub-object called menuitem that has its own hide/show methods. You may
wish to use a menuitem directly in some cases, but its usage is not documented
here.

69

Chapter 6. PEBL User Interface Functions

MakeMenu(header,x,y,win,fontsize, Creates menu
width,subitems,functions)

Clickon OpenSubMenus(obj,event) Opens the menu and accepts
clicks on menuitems

Show ShowMenu(obj,evt) Shows menu
Hide HideMenu(obj,evt) Hides menu
Inside InsideMenu(obj,evt) Tests whether click is inside menu

MakeMenuItem Helper function
RemoveMenuItem Helper function

6.4 PullDown
A Pulldown is a list of items that folds up to the chosen item. It is thus simliar
to a scrollbox when open, and uses some of the same mechanics.

The important properties of a pulldown are the .selected and .list. The .selected
property tells you the index of the currently selected list element. The .list
property gives you the list of elements, so that Nth(obj.list,obj.selected) will
give you the text of the selected list item.

Closed pulldown:

Open pulldown:

6.4.1 Usage

Once created, you can let the clickon method handle selection, and then identify
.list and .selected properties when needed. If you need immediate results when
selecting something, you will need to reset the .clickon property to name your

70

Chapter 6. PEBL User Interface Functions

special handler, which should call PullDown().

The .maxitems property of a pulldown speci�es how many items are shown
when the pulldown is open. If there are more than this, it will allow you to
scroll through the options. This can be set after the pulldown is created.

pulldown <- MakePulldown(["small","medium","large"],

gWin,12,120,1)

Pulldown(pulldown,[0,0])) ##Simulate click on pulldown

##Suppose you want to update the list:

UpdatePulldown(pulldown,["small","medium","large","extra-large"])

6.4.2 Methods and related functions

The following methods and related functions operate a pulldown:

MakePullDown(opts,
x,y,win,fontsize, width,selected)

Creates pulldown

Clickon Pulldown(obj,event) Opens the menu and accepts
clicks on menuitems

Draw DrawPulldown(obj) Redraws the pulldown object
Inside InsidePulldown(obj,evt) Tests whether click is inside pull-

down
UpdatePulldown Helper function
SelectPulldownByText(obj,text) Tries to select the �rst item in

pulldown that matches text

6.5 Button
A Button is created with the MakeButton function, which takes the arguments:

MakeButton(label,x,y,win,width)

The button is centered on x,y, and the width (in pixels) must be speci�ed. If
the label is too wide for the width, it will be scaled (shrunk) horizontally, which
could make it look strange, but less strange that truncating or cutting o� the
edges.

71

Chapter 6. PEBL User Interface Functions

6.5.1 Methods

Button has several methods bound to the following functions:

Clickon PushButton(obj,event) Animates a 'click' and returns to
normal

Draw DrawButton(obj) Draws the graphical elements
Move MoveButton(obj,x,y) Moves button to new center loca-

tion

6.5.2 Usage

Note that by default, the clickon method will just simulate a click and do nothing
else. To link it to another function, you need to reset the clickon property of
the button to name your own function. This function should probably call
PushButton, as shown below. In the main Start() function, you might de�ne
the button as such:

button <- MakeButton("quit",100,100,gWin,150)

button.clickon <- "HandleQuit"

then, later, de�ne the function HandleQuit:

define HandleQuit(button,xy)

{

PushButton(button,xy)

ExitQuietly("Exiting the program")

}

An example of this is found in ui-demo.pbl

6.6 Checkbox
A Checkbox is basically a button that has two states, 0 (unchecked) and 1
(checked) In fact, it reuses the mothods for a Button. You can interrogate the
state of a checkbox with the .state property.

6.6.1 Usage

Like a button, a checkbox is created with a label, x,y, center position, the
window, and a width:

box <- MakeCheckBox(label,x,y,win,width)

Its .state property starts at 0 and will appear unchecked, and if the ClickOn()
method is called, will change to 1 and appear checked (if it is 1, it will change
to 0/unchecked). By default, the clickon function just changes the state. You
may override this with your own custom callback function that has another

72

Chapter 6. PEBL User Interface Functions

e�ect, which may want to call ClickCheckBox(). There is also a SetCheck-
Box(obj,state) function you can use to force the state to a speci�c value.

Typically, this would be used for parameter settings, and when you are ready
to 'execute', you would look at the .state of the button to decide what to do.

6.6.2 Methods and associated functions

The following methods and functions operate a checkbox:

Creation MakeCheckBox(label,x,y,win,width) Creation
Clickon ClickCheckBox(obj,event) Changes the state of a checkbox

SetCheckBox(obj,state) Sets value to speci�c 0/1 state
Draw DrawButton(obj) Draws the graphical elements
Move MoveButton(obj,x,y) Moves button to new center loca-

tion

6.7 Scrollbox
This is a workhorse object that lists a bunch of elements, allows selecting, and
potentially editing them.

It has several properties of interest: .list, which is the list of items in the scroll-
box; .editable, which determines whether a second-click on an element should
permit editing (by calling EditScrollboxValue), .selected, which speci�es the
element of the list that is selected.

6.7.1 Usage

sb <- MakeScrollBox(opts, header,x,y,win,fontsize,

width,height,selected)

73

Chapter 6. PEBL User Interface Functions

6.7.2 Methods and related functions

Below is a list of functions related to ScrollingTextBox
MakeScrollBox(opts,header,x,y,win,fontsize,width,height,selected)Create scrollbox

Clickon ClickonScrollBox(obj,event) Handles click
Draw DrawScrollBox(obj,evt) Manages drawing
Inside InsideTB(obj,evt) Tests whether click is inside

scrollbox
UpdateScrollbox(obj) Handles updating when .list is

changed.
EditScrollboxValue(win,click, de-
fault,selected)

Allows editing of a value, called
by clickonscrollbox.

UpdateCapturedScrollBoxThumb(
obj, p)

Allows moving thumb

ClearScrollboxThumbCapture(
obj, p)

Helper; clears capture

6.8 ScrollingTextBox
A scrolling text box is useful for displaying long text that permits scrolling
through. The scrolling UI only appears of the length of the text is longer than
the size of the box. It is useful for loading a text �le. The linewrap argument
speci�es whether a long line should wrap around or just be truncated at its
end. It is based on a scrollbox, which allows selection/action for clicking on
speci�c lines.

6.8.1 Usage

stb <- MakeScrollingTextBox(text,x,y,win,fontsize,width,height,linewrap)

74

Chapter 6. PEBL User Interface Functions

6.8.2 Methods and related functions

Below is a list of functions related to ScrollingTextBox
MakeScrollingTextBox(text,x,y,win,fontsize,width,height,linewrap)Create scrolling text

Clickon ClickonScrollingTextBox(obj,event)Handles click
Draw DrawScrollingtextBox(obj,evt) Manages drawing
Inside InsideTB(obj,evt) Tests whether click is inside

scrolling textbox
UpdateScrollingTextBox(obj) Updates box after elements are

changed

6.9 PopupMessageBox
This create a small pop-up box at the point of the cursor to give a short
message. It is dismissed when the user clicks 'OK'.

6.9.1 Usage

By default, the message box is 300x200. You can specify width and height
arguments to change the size. It will query the location of the mouse and place
the box at that location (attempting to stay on the screen).

PopupMessageBox("Click OK to continue.",gWin)

PopUpMessageBox("Thank you", gWin,350,250)

75

Chapter 6. PEBL User Interface Functions

6.10 PopUpEntryBox
This is like a PopUpMessagBox, but collects a text entry, exiting when the user
hits the enter key. By default it is 300x100 pixels. It will appear at a location
speci�ed in an [x,y] coordinate list.

6.10.1 Usage

entry1 <- PopUpEntryBox("Please enter your birthplace",gWin,[100,100])

entry2 <- PopUpEntryBox("Please enter your name",gWin,[100,100],

"defaultname",300,200)

76

Chapter 7

The PEBL Launcher

The PEBL Launcher is the best way to navigate and launch PEBL experiments,
especially for novices or research assistants. It allows one to specify a few speci�c
options that are frequently changed, navigate through the PEBL Test Battery,
and create and save 'experiment chains' to let you run multiple experiments in
a row.

Figure 7.1: Screenshot of of PEBL Launcher.

77

Chapter 7. The PEBL Launcher

7.1 History of the Launcher
Prior to 2011, a front-end launcher was only available for PEBL on Windows.
It was written in Visual Basic 6, which was old-fashioned, single-platform, no
longer supported by Microsoft, and created a situation where a critical piece
of PEBL infrastructure depended on a non-free tool. The main obstacle to a
new launcher has always been: PEBL needs a cross-platform launcher using
a free software, and we don't want to have to distribute a whole additional
interpreter. This means that Python, wxBasic, TCL/TK, etc. were out
of the consideration. Why couldn't there be an easy-to-use cross-platform
programming tool we could use?
As of PEBL Version 0.12, we found one: PEBL itself. PEBL is not really
designed to create GUI applications, but it can be beat into submission to do
so. For Version 0.12, enough �lesystem access functions and other features were
available to make a reasonable launcher.
For PEBL 0.14, the launcher received a major overhaul. With the advent
of custom objects, we added a bunch of GUI objects (buttons, scrolling text
boxes, checkboxes, menus, etc.) that enabled a much more polished version of
the launcher that integrates better with other desktop options. This allowed
streamlining the launcher, adding functionality, improving its usefulness in the
research lab. This includes the ability to set and change script-based parame-
ters, which allows an experimenter to better tailor the PEBL battery tests to
their particular needs.

7.2 How it works
The simplest usage of the Launcher is that you use the �le selector on the left
to choose a .pbl �le, then click the button 'Run selected script� to run that
experiment. ONLY .pbl �les and directories will appear in the �le window.

78

Chapter 7. The PEBL Launcher

7.3 Features

7.3.1 File browser

Figure 7.2: The File Browser.

On the left is a �le browser. It will
only show .pbl �les and subdirecto-
ries. To navigate to a subdirectory,
simply click on the directory to select
it, then click on the selected directory.
To move back up a directory, click on
the '..\' row. When you have a .pbl
�le selected, you can use the 'Run se-
lected script' button to launch it.

7.3.2 Participant code

This will allow you to select the par-
ticipant code you want sent to any ex-
periments you are about to run. By
default, PEBL saves the last exper-
iment code when you exit, and then
reloads it the next time, incrementing
by one. This makes it easier to avoid
colliding participant codes and over-
writing data. Participant code need
not be a number, but the launcher
currently does not understand how to
increment non-numeric codes, and will probably restart at 1. The plus button
next to the code box will increment the current number by 1, which is useful if
you are running multiple sessions in a row.
The automatic incrementation of participant code can be turned o� by opening
the �leselect.pbl �le and changing the variable gAutoSubcode from 1 to 0.
When an experiment is launched, the speci�ed code will be fed into the exper-
iment using the -s command-line option, and will be bound to the gSubNum
variable. Some of the standard experiments will ask you to enter a participant
code regardless of whether you have one selected. If that is the case, you should
be able to edit the script to remove the request to specify a participant code.
However, most experiments in the test battery should only ask the experimenter
to specify a participant code if the participant code is '0', which is what it will
be when no -s command is given. So, if you are using code 0, many of the
experiments will ask you to enter a code after they launch.

7.3.3 Experimenter code

Many times, you may wish to keep track of the experimenter or research assistant
who collected the data. Have them enter their name in the 'experimenter'

79

Chapter 7. The PEBL Launcher

window. The name will be saved on exit. The experimenter code will be saved
to the runlog �le (see below).

7.3.4 Language

Some experiments have instructions and stimuli that are translated into di�erent
languages. Enter your two-character language code in the language box to tell
the experiment what language to use. If your chosen language is not available,
the experiment will fall back to English. For Chinese and related languages,
setting this will also change the default fontface used. If you want to translate
an experiment into your own language, ask on the PEBL mailing list.

7.3.5 Commmand Line Options

There are a number of command line options available for PEBL that are not
present as options in the launcher. If you want to use any, you can type them in
the �Command line Options� box and the launcher will pass them to PEBL. You
can use these to specify -V options that pass parameters into your experiment
(e.g., controlling whether a practice or a test round is given).

7.3.6 Edit and Parameters

The Edit button will let you edit the parameters used in the test. When you edit
and save the parameter set, it will then appear as an option in the parameters
pulldown. Before you run an experiment, you can select the parameter set you
want to use from the pulldown (or save it permanently to an experiment chain).

7.3.7 Fullscreen Mode

If you want to launch your experiment in full-screen mode to improve video
latency and to avoid distractions, check this box. The secret escape key combo is
ctrl-alt-shift-\: hit these four to abort out of an experiment before it is complete.

7.3.8 Demographics Collection

The U.S. NIMH requires a number of demographic variables for research they
fund. Checking this box will collect this data and save it to a data log �le called
demographics-log.csv, prior to running your experiment or experiment chain.

7.3.9 Experiment Chains

The launcher allows you to set up a 'chain' of experiments that get run in se-
quence. All the experiments will be run consecutively, with an identical subject
code. This is accomplished by running a separate instance of PEBL for each
experiment. This can sometimes lead to a '�ash' between each experiment if
running in fullscreen mode. Below the experiment chain window is a pulldown

80

Chapter 7. The PEBL Launcher

that lets you select the particular chain you want to use. The default chain is
loaded by default, and is also responsible for setting the parameter sets above.

7.3.10 Saving Experiment Chains

When you exit the launcher, the current experiment chain will get saved in the
the current con�g �le. By default, this �le is called default.con�g. This same �le
is loaded when the launcher starts again, restoring your settings. By hitting the
'save chain' button, you will be asked to enter a new name to save the current
con�guration under. Similarly, 'Delete chain' will delete the �le in which the
current chain is saved. A chain can be loaded at start-up (by specifying the
name of the con�g �le with the -v command-line option).

7.3.11 Editing Experiment chains

A chain can be edited by inserting, appending, or deleting steps, or clearing the
entire chain, using the buttons below the experiment chain box. Be sure to save
the chain after editing so your edits will be saved.

7.3.12 Loading Experiment Chains

A previously saved experiment chain can be loaded by selecting the chain name
from the pulldown selection box.

7.3.13 Description and Screenshot

On the right side of the launcher is a window that will show a screenshot and
print a description of a script when it is highlighted. These need to be created
by hand for each script. The launcher does its best to show you a preview of
the test inside any directory. But to run an experiment, you need to select a
.pbl �le in the �le window on the left. So, even if a screenshot appears on the
right, you need to select the actual .pbl �le to run the experiment.

7.3.14 Message feedback windows

Whenever a PEBL script runs, error and debug messages are saved to �les called
stdout.txt and stderr.txt, within the directory the �le is run from. When a test
is completed, PEBL will look for and try to load these �les in the tabbed window
at the bottom of the launcher. stdout.txt typically contains any messages saved
using the Print() command, and is useful for debugging code. If an experiment
crashes, it will be logged in the stderr.txt �le and the Error messages tab. In
addition, a lot of bookkeeping information is saved to that �le, which can help
diagnose other possible problems. If you need to access these �les directly to
help report bugs, you can open them using the 'Open Debug Output' and 'Open
error output' buttons.

81

Chapter 7. The PEBL Launcher

7.3.15 Other buttons

The launcher has a number of other buttons to help you use PEBL. These
include:

� Open/Edit selected On the lower left, there is a button labeled �Open/Edit
selected�. This will open a selected .pbl script in a text editor, and will
open a directory in your system's �le manager. An easy way to look at or
make changes to the script, or to locate data �les after a script is run.

� Wiki This will launch a web browser that will take you to the PEBL
wiki page that is related to the currently selected test. THis should help
provide information about the test, its background, parameters, and data
format.

� Combine data This will launch a data combining utility described below.
It will help merge all your data �les together into a single spreadsheet.

� Open debug output Whenever an experiment is run, any time you use the
Print() function, it will print the resulting text to a �le names stdout.txt
the directory it was run in. This button will open that �le.

� Open error output Whenever an experiment is run, the error and status
messages are saved to a �le called stderr.txt in the directory it was run in.
This button will open that �le.

7.3.16 Menu

A lot of functionality is present in menus at the top of the window.

� File|Exit This will exit the launcher and save the current con�guration
options to the named experiment chain.

� Options|change launcher size. The launcher has trouble running on net-
books with only 600 pixels vertical distance. This will make a 'small'
launcher that is more compact, but only works next time the launcher is
opened.

� Help|About This provides a short description of the launcher.

� Help|Manual This opens the PEBL .pdf manual. The manual is located in
di�erent places on each platform, and will change names for each release.

� Help|Website This will take you to the main PEBL website.

� Help|Wiki This button will take you to the PEBL wiki, and do its best
to �nd a WIKI page related to the experiment you are looking at. They
won't always exist, and if not, you can always sign in and make your own.

� Help|Tutorial This will open a wiki page containing a basic PEBL usage
tutorial.

82

Chapter 7. The PEBL Launcher

� Help|Review This will let you provide feedback about PEBL

� Help|Donate This will let you donate funds to help support PEBL devel-
opment.

7.4 Launching an experiment

To launch an experiment, navigate through the directories in the �le listing box.
Only directories and �les with the .pbl extension are shown in this box. To open
a directory, click once to move the highlight box onto the directory name, and
a second time to open the directory. When a new directory is opened, the
�rst available .pbl �le will be automatically selected. To run that script, just
press the 'Run Selected script' button above the �le select box. It will run with
the speci�ed parameter, including subject code, language, fullscreen mode. In
addition, if the 'collect demographics' button is selected, a demographic survey
will happen prior to the study running.

7.5 Launching an experiment chain
If you have a series of experiments you want to run, create an experiment
chain and launch it using the 'Launch chain' button above the experiment
chain selection box. Tip: Use experiment chains even if you are are running
just single experiment, with just a single experiment selected. This give faster
access and is less error-proned.

7.6 Translating the Launcher
You can translate the launcher to your own language. Open the launcher
�le (�leselect.pbl), and go to the end of the script, to a function named
�GetStrings�:
define GetStrings(lang)

{

lang <- Uppercase(lang)

if(lang == "EN")

{

gRunText <- "Run selected script"

gOpenText <- "Open"

gExitText <- "EXIT"

gViewDebugText <- "View debug output"

gViewErrorText <- "View error output"

gAddToChainText <- "Add to Chain"

gClearChainText <- "Clear Chain"

gSaveChainText <- "Save Chain"

....

The labels used in the launcher all appear here. You should be able to just
translate the text of each on into the language of your choice. Send the trans-
lations back to the author so they can be incorporated into the next launcher

83

Chapter 7. The PEBL Launcher

version. You can also make a section in the if statement for your particular
language. When you change the language in launcher, it will save that option
and use your language of choice next time.

7.7 Utility:Parameter setting
Version 0.14 of the PEBL Launcher allows you to set parameters from tests
before launching. A basic screenshot is shown below:

Here, the �rst column shows the name of the parameter. The second is the
current value, which can be edited by clicking on the box and typing a new
value. When complete, hit enter and the new set will be recorded. The rightmost
column provides a basic description of the parameter, and its default value.

To create a new parameter set, write the name of the parameter set you want
to use in the box at the top of the screen. Then, when you hit 'Save �le and
exit', it will be saved to this parameter �le. There is no need to include .par in
the �lename, as it will be added if you do not add it yourself. To edit a current
parameter set, select the parameter set you want and press 'edit' in the main
window.

7.8 Utility: Combining data �les
Once an experiment is done, the data �les are typically stored within the data
directory in which the test appeared. Furthermore, each participant may be
saved in his or her own subdirectory. On some tests, a merged or pooled data
�le is also saved, but this is not always the case. In order to merge all of you
data into one master �le, you can use PEBL's data combining tool, accessible
through a button on the lower left of the launcher.

To use this, navigate to the data directory of your tests, and click the 'Combine
data' button. A screen like the one below should open.

84

Chapter 7. The PEBL Launcher

On the upper right, a list of all �les within the selected directory (and subdi-
rectories) will be displayed. You want to choose some (but probably not all)
of these. You can choose a subset by typing match values into the match and
exclude boxes on the left. Currently, the * indicates all �les will match. You
may want to just include .csv �les, in which case deleting the * and typing csv
into the box will bring up only �les with csv in their name. You may want to
exclude summary �les, in which case you can type summary into the excludes
box. Each time you change the selection criteria and hit enter, the list of �les
will update. A preview of any of the �les can be seen in the lower right window.
IN the match and exclude boxes, spaces act as logical 'or's. matching with the
following '* csv' will match all �les, because the �rst * will match all �les. Or
can also be speci�ed using the | character. The & character can be used to
specify AND criteria. To match csv �les from participant 300, you would enter
'300&csv'. The matches are process before the excludes.

Once you have selected the right �les using match and exclude criteria, you
should determine whether the �les have a header. If they have a header, you
probably want to remove the header, including just once in the merged �le. The
combiner is not smart enough to detect this on its own, so you must check '�les
contain header' if you want the header stripped from each individual data set
and added to the �nal merged set.

Finally, especially if your data does not have a participant code in it, you may
check 'add �lename to data' which will add a column at the beginning of the
data indicating the source �le of each row of data.

Once you are ready, you can choose 'combine and save' which will save the data
to the �lename you speci�ed in 'save �le'. If you use the combiner more than

85

Chapter 7. The PEBL Launcher

once, be sure to exclude 'pooled' from your match list so you don't get multiple
copies of your data. You can also choose 'combine and open', which will create
the pooled �le, but then try to open in with whatever program is associated
with that �le type (i.e., microsoft excel for .csv �les).

86

Chapter 8

The PEBL Psychological Test

Battery

This chapter contributed by Bryan Rowley in collaboration with
Shane Mueller

8.1 About the PEBL Test Battery

This site is for a battery of psychological tests implemented in PEBL and dis-
tributed (and redistributeable) freely. They are designed to be easily used
on multiple computing platforms, running natively under Win32, Linux, and
OSX Operating Systems. The tests are designed to implement a wide range of
computer-administered psychological tests and experiments of interest to neu-
ropsychological, cognitive, clinical communities.

The current version of the battery is designed to work with PEBL version 2.0
and was released in 2016. It is distributed with PEBL 2.0, and is automatically
installed in My Documents\pebl.2.0\battery on windows.

These tests are designed to implement a wide range of tests that are used
throughout the psychological, neuropsychological research and clinical commu-
nities. Some are reimplementations of tests that are only available on limited
computing platforms or cost hundreds of dollars. Each experiment saves the
complete data set for later analysis, and many compute basic analyses that it
writes in report format.

8.2 Setting Parameters of Battery Tests
More details of parameter-setting are available within the next chapter that
covers the launcher.

The tests within the battery typically expose the most important instrumen-
tation variables that control important aspects of the test. These often in-
clude the number of trials, the make-up of stimuli, etc. For example, the
following shows parameters for the ANT test, which is opened when you hit

87

Chapter 8. The PEBL Psychological Test Battery

the 'edit' button near the parameters pulldown when you have a parameter-
enabled test selected in the �le window. In this test, the leftmost column
indicates the name of the parameter; the next column indicates its current
value, and the �nal column describes the value along with its default value.

If you want to create a custom parameter set, edit these values and click 'Save
�le and exit'. This will create a default parameter �le that will be used. You
can also type a a new name, and save it, and then select the new name in the
parameters pulldown. You can then create an experiment chain and select one
parameter set or another to make setup easier and error-free.

8.3 Translating or changing test instructions
Most of the tests within the test battery permit translating any participant-
visible text. This usually includes instructions, debrie�ng, and head-
ers/stimuli/labels. Each test needs to be designed to permit this, but most
of the tests in the battery have (most that don't involve primarily English
stimuli/materials, such as memory tests).

To translate a test, �rst be sure the 'language' entry box is named according to
the two-letter code associated with your language of choice. By default, it will
choose en for English. Then, select the test within the �le section scrollbox, and
click on the 'translate test' button on the lower right of the window. This will
bring up the following screen:

88

Chapter 8. The PEBL Psychological Test Battery

If the language selection is correct, you are �ne; otherwise edit the language to
be whatever two-letter code you want to use. If you choose en, you will edit
the default instructions, and if you make an error you may have to re-copy the
translation �le from the main PEBL
battery
directory (i.e., in Program Files(x86)
PEBL).

In this dialog, each critical piece of text has a name that is referred to within the
testing script. The next column indicates the original text, and the third column
is the translated text (which will probably be in English if no translations have
been made previously). Select the name on the left, and edit the text on the
right. If you want, you can right-click on the window to clear the text or copy
in text created elsewhere.

For some languages, this translation dialog may not work�we are still working
on improving international keyboard input. In reality, this just edits a .csv �le
that is stored within the test
translations
directory. For a test called test.pbl, the English �le will be called test
translations
test.pbl-en.csv. You can also edit this with a normal text editor or spreadsheet.
To edit by hand, copy the English �le to one with a name associated with your
chosen language, replacing -en with your language code. Then, edit using either
a text editor like notepad++, or a spreadsheet program. Edit only the words
within the second column. If you want to add a line break, use \n.

8.4 The Tests

The following table describes the basic tests currently implemented in the PEBL
Test Battery. Many of them represent the only Free version of proprietory tests

89

Chapter 8. The PEBL Psychological Test Battery

available anywhere. They include a free Iowa Gambling Task, a free version
of the TOVA®, a free Wisconsin Card Sort Test®, a free version of Conners
Continuous Performance task, and a number of other useful tasks, with more to
come. All screenshots found on this page are released into the public domain,
and can be used for whatever purpose without copyright assignment, including
in academic papers. More information on tests is found in the
PEBL WIKI

90

http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Test_Battery

Chapter 8. The PEBL Psychological Test Battery

Table 8.1: Test Battery

PEBL Test/Version of: Description

Bechera's Gambling Task
(version of Bechara's Iowa Gam-
bling Task ®
wikipedia)

Choose from four decks, each choice with a
cost and each providing reward. Used for tests
of executive control.
Key Skills used: Decision Making, Strategy
and Problem Solving, Risk Assessment.
Note: the task requires individuals to decide
on which deck to choose from, with the chance
of loosing in the process. Test can be modi�ed
to ask individual to achieve a certain amount
of money.

The "Hungry Donkey" Task
A version of Bechera's Gambling
Task for children

The donkey chooses from four doors, each
door has a cost and reward in apples. Used
for tests of executive control.
Key Skills used: Fine-motor skills, Visual
processing.
Note: Test can be modi�ed to ask individual
to reach a certain number of apples (i.e. 10
apples) in a certain amount of time.

TOAV: Test of Attentional
Vigilance
A Version of TOVA®: Test of
Variables of Attention
wikipedia

22-minute test requiring subject to detect a
rare visual stimulus (top or bottom). Used to
diagnose ADD, ADHD, etc.

Key Skills used: Concentration, Reaction
Time, Attention
Note: This task requires the individual to
concentrate for an extended period of time.
Thus, the extent to which their reaction time
scores alter through the duration of this test
can be indicative of how their attention levels
have been a�ected.

91

http://pebl.sourceforge.net/wiki/index.php?title=Bechara's_Gambling_Task
http://en.wikipedia.org/wiki/Iowa_gambling_task
http://pebl.sourceforge.net/wiki/index.php?title=The_Hungry_Donkey_Task
http://pebl.sourceforge.net/wiki/index.php?title=TOAV:_Test_of_Attentional_Vigilance
http://pebl.sourceforge.net/wiki/index.php?title=TOAV:_Test_of_Attentional_Vigilance
http://en.wikipedia.org/wiki/Tova

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

PEBL Continuous Performance
Test
Version of Conners CPT
wikipedia

14-minute vigilance test requiring subject re-
spond to non-matches. Used to diagnose
ADD, ADHD, etc.
Key Skills Used: Reaction Time, Attention,
Concentration.
Note: The test length allows for observation
of how their results change overtime (i.e. at-
tention levels altering).

PEBL Perceptual Vigilance Task
(PPVT)
Wilkinson & Houghton's Psy-
chomotor Vigilance Task
wikipedia

A vigilance task used to detect vigilance and
sleep lapses.
Key Skills Used: Reaction Time, Attention,
Concentration.
Note: The individual's results can be viewed
in data section, and we can observe how their
performance declines or improves throughout
test duration.

Berg's Card Sorting Test
version of Berg's (1948) Wiscon-
sin Card Sorting Test
wikipedia

Sort multi-attribute cards into piles according
to an unknown and changing rule.
Key Skills used: Strategy and Problem
Solving, Decision Making, Inhibition, Work-
ing Memory.

Note: The results from the data section pro-
vide an indication of which rule (shape, color
or number) is easiest for the individual via re-
action time. We are able to see how the indi-
vidual's working memory is operating by their
ability to recall which rule is active (via cor-
rect responses).

92

http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Continuous_Performance_Test
http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Continuous_Performance_Test
http://en.wikipedia.org/wiki/Continuous_Performance_Task
http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Perceptual_Vigilance_Task
http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Perceptual_Vigilance_Task
http://en.wikipedia.org/wiki/Psychomotor_vigilance_task
http://pebl.sourceforge.net/wiki/index.php?title=Berg's_Card_Sorting_Test
http://en.wikipedia.org/wiki/Wisconsin_card_sort

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Simple Response Time
wikipedia

Detect the presence of a visual stimulus, as
quickly and accurately as possible.

Key Skills Used: Reaction Time, At-
tention, Fine Motor Skills.

Note: The task allows for observation
of how their attention and reactivity alter
throughout the test's duration. The individ-
ual can also work on their executive control
and �ne motor ability.

Digit Span
A component of many intelli-
gence tests
wikipedia

Remember a sequence of digits.
Key Skills Used: Working Memory, Nu-
merical Processing, Short Term Memory.

Note: Primacy, Recency e�ects can be ob-
served in this task (i.e. which numbers in
the set are being remembered, �rst numbers
or last numbers).

Partial Report Procedure
Lu et al.'s (2005) update of
Sperling's iconic memory proce-
dure. wikipedia

May provide an early-warning sign for
Alzheimer's.
Key Skills used: Reaction Time, Decision
Making, Working Memory.
Note: Individuals are required to make quick
decision based on a brief stimulus shown. Not
recommended for people with slow reaction
times.

93

http://pebl.sourceforge.net/wiki/index.php?title=Simple_Response_Time
http://en.wikipedia.org/wiki/Reaction_time
http://pebl.sourceforge.net/wiki/index.php?title=Digit_Span
http://en.wikipedia.org/wiki/Digit_span
http://pebl.sourceforge.net/wiki/index.php?title=Partial_Report_Procedure
http://en.wikipedia.org/wiki/Iconic_memory

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Implicit Association Test
A test of automatic associations
between memory representa-
tions. wikipedia

Tests association between two sets of binary
classi�cations.

Tower of London
Traditional problem solv-
ing/planning task
wikipedia

Tests ability to make and follow plans in
problem solving task.

Key Skills Used: Strategy and Problem
Solving,
Color Processing, Hand-eye coordination,
Fine Motor Skills.
Note: Test cannot be completed successfully
for color-blind individuals. Task is great for
individuals trying to improve on executive
control, and requires both strategy and prob-
lem solving skills to complete successfully.

Symbol Counter Task
Garavan (2000) counter task

Useful indicator of executive control.
Key Skills used: Reaction Time, Working
Memory, Selective Attention.
Note: We can view if the individual will be
able to recall which symbols are associated
with which shift tab (i.e. a measure of working
memory via correct responses).

94

http://pebl.sourceforge.net/wiki/index.php?title=Implicit_Association_Test
http://en.wikipedia.org/wiki/Implicit_Association_Test
http://pebl.sourceforge.net/wiki/index.php?title=Tower_Of_London
http://en.wikipedia.org/wiki/Tower_of_London_Test

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Four choice response time
Wilkinson & Houghton's 4-
choice response time
wikipedia

Respond to a plus sign that appears in one of
four corners of the screen.
Key Skills used: Reaction Time, Selective
Attention, Visual Processing.
Note: the task measures how quickly the in-
dividual's attention leads them to the correct
location, combining visual processing abilities
with reaction time.

Time Wall
UTCPAB's Time wall

Estimate the time when a moving target will
reach a location behind a wall.
Key Skills Used: Reasoning, Calculating,
Reaction Time, Strategy and Problem Solv-
ing.
Note: this task requires tracking of an object
after its disappearance. It requires the indi-
vidual to in a sense to imagine the location
of this object using precise calculating (of ob-
ject's speed).

PEBL Compensatory Tracker
Similar to Makeig & Jolley's
CompTrack

Use mouse/trackball to keep a randomly mov-
ing target inside a bullseye.
Key Skills used: Fine Motor Skills, Strategy
and Problem Solving, Hand Eye Coordination.
Note: this task can be helpful for individuals
wanting to get better with using a mouse for
the computer.

95

http://pebl.sourceforge.net/wiki/index.php?title=Four_Choice_Response_Time
http://en.wikipedia.org/wiki/Reaction_time
http://pebl.sourceforge.net/wiki/index.php?title=Time_Wall
http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Compensatory_Tracker
http://sccn.ucsd.edu/~scott/

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Lexical Decision
Meyer & Schvaneveldt's LDT
wikipedia

Determine whether a stimulus is a word or
nonword.
Key skills used: Linguistic Processing, Lan-
guage Processing.
Note: the words are able to be changed for
the test. They can be changed to �t closely to
an individual's expertise (ex. If individual is
aphasic but has an interest in bands, the words
can be altered to include words of bands they
listen to frequently).

Mental Rotation
Shepard's mental rotation task
wikipedia

Determine whether two �gures are identical,
subject to rotation.
Key Skills used: Reasoning, Visual Process-
ing, Decision Making.
Note: while observing both objects, the in-
dividual is required to make a decision of
whether the objects are similar, and requires
precise reasoning due to their similarities (i.e.
be able to reason that object on left looks iden-
tical to the object on the right, only inverted
from the object on the right)

Matrix Rotation
Version of UTC test battery
matrix rotation

Determine whether a 6x6 matrix is the same
(with rotation) as another.
Key skills used: Selective Attention, Work-
ing Memory, Visual Processing.
Note: Working Memory is being tested, we
can see how individual's object manipulation
or `visuo-spatial sketchpad' is operating (I.e.
correct responses being a measure of working
memory, and the `sketchpad' the speci�c com-
ponent being measured).

96

http://pebl.sourceforge.net/wiki/index.php?title=Lexical_Decision_Task
http://en.wikipedia.org/wiki/Lexical_decision_task
http://pebl.sourceforge.net/wiki/index.php?title=Mental_Rotation
http://en.wikipedia.org/wiki/Mental_rotation
http://pebl.sourceforge.net/wiki/index.php?title=Matrix_Rotation

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Spatial Cueing
Posner's attentional cueing
(spotlight) task.wikipedia

Given a probabilistic cue of where a stimulus
will appear, respond as fast as possible.
Key Skills used: Selective Attention, Inhi-
bition.
Note: this task tests the individual's ability
to make the correct response regardless of the
correct cue or the distracter cue. We can view
how the distracter cue a�ects the individual
via correct responses and reaction time.

Two column addition
UTC test battery's 2-column
addition.

Add three two-digit numbers and respond
quickly and accurately.
Key Skills Used: Mathematical Processing,
Numerical Processing, Working Memory.
Note: it is important to distinguish between
Mathematical and Numerical, as mathemat-
ical processing in this test refers to the ma-
nipulation of numerical information, whereas
numerical processing refers to the knowledge
of numerical information (i.e. the understand-
ing that the number `one' means `1'.)

Stroop task
Stroop's attention task
wikipedia

Respond to either the color or name of stim-
uli.
Key Skills Used: Inhibition, Selective At-
tention.
Note: Reaction Time is recorded in the data
section, allowing for analysis of which trails
are easiest, and which are most challenging.

97

http://pebl.sourceforge.net/wiki/index.php?title=Spatial_Cueing
http://en.wikipedia.org/wiki/Michael_Posner_(psychologist)
http://pebl.sourceforge.net/wiki/index.php?title=Two_column_addition
http://pebl.sourceforge.net/wiki/index.php?title=Stroop_task
http://en.wikipedia.org/wiki/Stroop_effect

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

PEBL Manual Dexterity Move a noisy cursor to the target.
Key Skills used: Fine Motor Skills, Strategy
and Problem Solving, Hand-eye Coordination.
Note: This task is helpful for individuals try-
ing to improve their mouse ability with the
computer.

PEBL Trail-making test
Version of Reitan's (1958) Trail-
making A and B tests.
wikipedia

Connect the dots task.
Key Skills used: Language Processing, Nu-
merical Processing, Hand-eye coordination.
Note:this task tests both linguistic and nu-
merical processing, and tests the individual's
ability to navigate to the correct location (i.e.
visual processing).

Aimed Movement (Fitts's Law)
test
wikipedia

Mouse-driven implementation of classic
perceptual-motor task.
Key Skills used: Hand-eye coordination,
Fine Motor Skills, Concentration.
Note: The number of trails (105) requires
continuous concentration on the participants'
behalf.

98

http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Manual_Dexterity
http://pebl.sourceforge.net/wiki/index.php?title=PEBL_Trail-making_task
http://en.wikipedia.org/wiki/Trail-making_test
http://pebl.sourceforge.net/wiki/index.php?title=Aimed_Movement_Task
http://pebl.sourceforge.net/wiki/index.php?title=Aimed_Movement_Task
http://en.wikipedia.org/wiki/Fitts's_Law

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Pursuit Rotor task
Classic mechanical test device

Mouse-driven motor pursuit.
Key Skills used: Hand �eye coordination,
Fine Motor Skills, Strategy and Problem Solv-
ing.
Note: The task requires the individual to
adapt to the rate at which the circle is moving,
thus requiring incorporation of a calculating
strategy to complete successfully.

Match to sample task
Classic non-visual short-memory
task

Match a matrix pattern to one presented after
a delay.
Key Skills used: Reasoning, Calculating,
Color-processing.
Note: color-blind individuals will not be as
successful in this task.

Corsi block test
Version of physical "Corsi block-
tapping test"

Measure of visual-spatial working memory.
Key Skills used: Working Memory, Visual
Processing.
Note: reaction time can be measured in the
trails varying in length.

99

http://pebl.sourceforge.net/wiki/index.php?title=Pursuit_Rotor
http://pebl.sourceforge.net/wiki/index.php?title=Match-to-sample_task
http://pebl.sourceforge.net/wiki/index.php?title=Corsi_Blocks

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Change Detection test
Version of numerous change
blindness paradigms

Assess whether participant sees change in a
display of colored circles.
Key Skills used: Selective attention, Visual
processing, Concentration.
Note: the changing object may not be so ob-
vious at �rst, so additional concentration may
be required.

Clock Test
Mackworth's Sustained atten-
tion test

Watch a clock, and respond whenever it skips
a beat.
Key Skills used: Selective attention.
Note: Reaction Time is revealed in the data
section, indicating the individual's attention
levels as the task progresses.

Device Mimicry Test Operate a 4-df etch-a-sketch to recreate paths
produced by the computer.
Key Skills used: Calculating, Hand-eye co-
ordination, concentration, Fine Motor Skills,
Strategy and Problem Solving.
Note: This task requires precision to com-
plete successfully. Test can be very helpful for
individual's trying to improve their computer
skills, or in cognitive rehabilitation sessions.

100

http://pebl.sourceforge.net/wiki/index.php?title=Change_Detection_task
http://pebl.sourceforge.net/wiki/index.php?title=Clock_Test
http://pebl.sourceforge.net/wiki/index.php?title=Device_Mimicry_Task

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Item-Order Test Assess two consecutive letter strings, and de-
termine whether they are the same or di�er-
ent. Di�erent trials are creating either by
changing identity of a letter or the order of
two adjacent letters.
Key Skills used: Language Processing,
Working Memory.
Note: Does the duration of the test result in
better or poorer performance? This can be
measured in the data section.

Letter-Digit substitution
Version of UTCPAB and Wech-
sler tests

Recode stimuli according to a letter-digit code
chart.
Key Skills used: Language Processing, Nu-
merical Processing.
Note: great test to use with Aphasiac pa-
tients to see how they map language informa-
tion with mathematical information. Reaction
time revealed in data section.

Math Processing Do simple arithmetic problems.
Key Skills used: Mathematical processing,
Numerical processing, Reaction Time.
Note: Important to distinguish between
mathematical and numerical processes, as the
former refers to the manipulation of numeri-
cal information, and the latter refers to basic
processing of numerical information (i.e. that
`1' means `one').

101

http://pebl.sourceforge.net/wiki/index.php?title=Item-Order_Test
http://pebl.sourceforge.net/wiki/index.php?title=Letter-Digit_Task
http://pebl.sourceforge.net/wiki/index.php?title=Math_Processing_task

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Memory Span (Visual)

Classic experimental paradigm

See a sequence of items, then respond using
mouse or touchscreen.
Key Skills used: Working Memory, Short
Term Memory, Visual Processing.
Note: Individuals familiarity with certain ob-
jects may result in better recall for those ob-
jects (i.e. animal lovers).

Object Judgment Determine whether two polygons are identical,
while manipulating shape, orientation, size.
Key Skills used: Calculating, Reasoning,
Visual Processing.
Note: may require concentration due to the
duration of task. Task requires visual manip-
ulation of the stimuli presented.

Pattern Comparison Test Examine two grid patterns and determine
whether they are the same.
Key Skills used: Calculating, Visual Pro-
cessing.
Note: pattern-samedi�.pbl requires reaction
time (found in data section), while pattern-
sequential.pbl requires working memory to
function (via correct responses).

102

http://pebl.sourceforge.net/wiki/index.php?title=Memory_Span
http://pebl.sourceforge.net/wiki/index.php?title=Object_Judgment
http://pebl.sourceforge.net/wiki/index.php?title=Pattern_Comparison_Task

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Probability Monitor Watch a set of gauges to determine when one
gets a hit.
Key Skills used: Calculating, Inhibition, Vi-
sual Processing, Reasoning.
Note: while trying to detect a pattern (cal-
culating and reasoning), the individual is re-
quired to inhibit other random dials on later
trails (trails 2 and 3). Reaction time is mea-
sured in data section.

Situation Awareness Test Watch a set of moving targets and respond to
probes about their locations and identities.
Key Skills used: Selective Attention, Work-
ing Memory, Visual Processing.
Notes: Test great for combining visual aware-
ness with working memory.

Comfort scales Respond to four visual-analytic scales about
di�erent dimensions of comfort.
Key Skills used: Linguistic Processing, Cal-
culating.
Note: Allows for extensive self re�ection, and
requires linguistic ability for responses (to in-
dicate how they feel).

103

http://pebl.sourceforge.net/wiki/index.php?title=Probability_Monitor
http://pebl.sourceforge.net/wiki/index.php?title=Situation_Awareness_Test
http://pebl.sourceforge.net/wiki/index.php?title=Comfort_Scales

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Speed tapping test
Version of Reitan test battery

Tap a key as quickly as possible.
Key Skills used: Fine Motor Skills. Note:
can be used for individuals in rehabilitation
sessions.

Time tapping test Tap for a production period at a prespeci�ed
pace.
Key Skills used: Calculating, Working
Memory.
Note: requires individual to recall and imple-
ment the pace at which they are required to
tap.

Tower of Hanoi test
Classic puzzle and cognitive test
of planning

Solve game with disks.
Key Skills used: Calculating, Reasoning,
Hand-eye coordination, Fine Motor Skills,
Working Memory, Visual Processing, Strategy
and Problem Solving.

Note: Able to track the individual's number
of moves. Task is very great for a multitude of
cognitive abilities, and is helpful for patients
with cognitive disorders.

104

http://pebl.sourceforge.net/wiki/index.php?title=Tapping
http://pebl.sourceforge.net/wiki/index.php?title=Timetap
http://pebl.sourceforge.net/wiki/index.php?title=Tower_of_Hanoi

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Two-column addition Do mental arithmetic of at least three two-
digit summands.
Key Skills used: Mathematical Processing,
Working Memory, Calculating.
Note: Individual can be asked how they de-
cided to solve the problems (i.e. with what
strategy: �rst column then the next two
columns, or adding all the numbers at once
etc.)

Visual Search Find the target amidst clutter.
Key Skills used: Language Processing, Vi-
sual Processing, Selective Attention, Colour
Processing, Inhibition, Concentration.
Note: X's and O's are quite distinguishable
letters. O's look more similar to the other let-
ters than X does, and therefore the trials with
X's and O's can be compared to see which
ones are easier (via correct response or not)
and found quicker (via reaction time).

Attentional Network Task
Version of Fan et al.'s ANT

Assess three types of attention.
Key Skills used: Selective Attention, Reac-
tion Time, Inhibition.
Note: The data section reveals trial and the
corresponding reaction times. Can be viewed
is how their attention processes alter through
the test's duration.

105

http://pebl.sourceforge.net/wiki/index.php?title=Two_column_addition
http://pebl.sourceforge.net/wiki/index.php?title=Visual_Search
http://pebl.sourceforge.net/wiki/index.php?title=PANT

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

PEBL Balloon Analog Risk Task
Version of LeJuez et al's BART

Assess three types of attention.
Key Skills used: Risk Assessment and risk
aversion.
Note: Test can be modi�ed to ask the partic-
ipant to reach a certain money value in a set
amount of time.

Dot Judgment Task
Determine which �eld has more
dots.

Key Skills used: Calculating, Decision Mak-
ing
Note: Threshold provides an opportunity to
observe how the individual performs (with cor-
rect judgment) when dot amounts are similar.

Flanker Task
Eriksen's Flanker Task

Make direction response with distraction.
Key Skills used: Selective Attention, Reac-
tion Time, Inhibition.
Note: The data section reveals trial and the
corresponding reaction times. Can be viewed
is how their attention processes progress
through the test's duration.

106

http://pebl.sourceforge.net/wiki/index.php?title=Balloon_Analog_Risk_Task
http://pebl.sourceforge.net/wiki/index.php?title=Dot_Judgment
http://pebl.sourceforge.net/wiki/index.php?title=Flanker_Task

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Go/No-go Task
Version of Bezdjian's 2009 Im-
plementation

Classic continuous performance task.
Key Skills used: Inhibition, Reaction Time,
Language Processing, Selective attention.
Note: The data section allows for observation
of their scores, and to view if their inhibition
skills are increasing or decreasing with time.

Manikin Task Assess mental rotation.

TLX Workload Assessment

An implementation of NASA's
TLX workload assessment
wikipedia

Assess workload of task on multiple dimen-
sions.
Key Skills used: Concentration, Linguistic
Processing, Calculating.
Note: requires the individual to self re�ect,
read the information, and calculate their lev-
els according to the scale provided.

107

http://pebl.sourceforge.net/wiki/index.php?title=Go/No-go_Task
http://pebl.sourceforge.net/wiki/index.php?title=Manikin
http://pebl.sourceforge.net/wiki/index.php?title=TLX
http://en.wikipedia.org/wiki/NASA-TLX

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Muller-Lyer Illusion
Classic perceptual illusion
wikipedia

Psychometric study of Illusion.
Key Skills used: Calculating, Reaction
Time.
Note: the task requires a quick response, thus
attention abilities can be hard to measure in
this task.

Oddball Task
Version of Huettel's implemen-
tation

Respond to a stimulus dimension overshad-
owed by irrelevant dimension.
Key Skills used: Inhibition, Selective Atten-
tion, Visual Processing, Reaction Time.
Note: Inhibition skills require the individual
to ignore the location and instead focus on the
shape di�erences.

Simon Task
Simon's S-R compatibility test

Respond to a stimulus dimension, overshad-
owed by spatial location.
Key Skills used:Color Processing, Inhibi-
tion, Visual Processing, Selective Attention,
Reaction Time.

Note: those who are color blind will have dif-
�culty in completing this task. Individual's
inhibition abilities can be measured (via cor-
rect responses) to see how well they can focus
on the point of the task (color) and not be
distracted by its location.

108

http://pebl.sourceforge.net/wiki/index.php?title=Muller-Lyer_Illusion
http://en.wikipedia.org/wiki/Muller-Lyer_Illusion
http://pebl.sourceforge.net/wiki/index.php?title=Oddball_Task
http://pebl.sourceforge.net/wiki/index.php?title=Simon_Task

Chapter 8. The PEBL Psychological Test Battery

PEBL Test/Version of: Description

Switcher Task Respond to a matched and changing stimulus
dimension.
Key Skills used: Visual Processing, Selec-
tive Attention.
Note: reaction time is measured in the data
section, along with trail type. Thus, times
associated with color, shape and letter can
be measured to see which is easiest and most
challenging for the individual.

Norms and Other Uses
Many of the original versions of the tasks we implement here have been normed
on a large population. Such norms are available in published articles. Because
these implementations are not identical (many of them use slightly di�erent
stimuli, response methods, timing, etc.) one must be careful when applying the
results to the normed data. If you use PEBL or the PEBL Psychological Test
Battery, please reference us! If you are interested in helping develop norms for
PEBL tests, have access to subject populations and testing facilities, join the
pebl-norms@lists.sourceforge.net mailing list and tell us what norms you are
most interested in.

Support and Contact info
If you have any general questions about PEBL or the PEBL Psychological Test
Battery, you can contact us at: pebl-list@lists.sourceforge.net. Email support is
available free-of-charge. You can sign up for this email list or browse the archives
here. More information about the main author is available here. Enquire on the
list if you are interested in paying someone to write new experiments or modify
existing ones for your needs.

Obtaining the Battery The PEBL Test Battery is installed with the main
PEBL installation. The �rst time you run PEBL, it will be copied into a folder
in your Documents directory called pebl-exp.2.0 (or similar depending on the
version of PEBL you are running). On Linux, running > pebl �install will
copy the battery directory there. The PEBL launcher will start in that directory,
and let you explore and navigate the di�erent tests in the battery.

http://pebl.sourceforge.net/battery.html

109

http://pebl.sourceforge.net/wiki/index.php?title=Switcher_Task
http://lists.sourceforge.net/lists/listinfo/pebl-norms
mailto:pebl-list@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/pebl-list
http://lists.sourceforge.net/lists/listinfo/pebl-list
http://obereed.net/

Chapter 8. The PEBL Psychological Test Battery

110

Chapter 9

Detailed Function and

Keyword Reference

9.1 Symbols

Name/Symbol: +

Description: Adds two expressions together. Also, concatenates strings to-
gether.

Usage: <num1> + <num2>

<string1> + <string2>

<string1> + <num1>

Using other types of variables will cause errors.

Example: 33 + 322 --> 355

"Hello" + " " + "World" --> "Hello World"

"Hello" + 33 + 322.5 --> "Hello355.5"

33 + 322.5 + "Hello" --> "33322.5Hello"

See Also: -, ToString()

Name/Symbol: -

Description: Subtracts one expression from another

Usage: <num1> - <num2>

Example:

111

Chapter 9. Detailed Function and Keyword Reference

See Also:

Name/Symbol: /

Description: Divides one expression by another

Usage: <expression> / <expression>

Example: 333 / 10 # == 33.3

See Also:

Name/Symbol: *

Description: Multiplies two expressions together

Usage: <expression> * <expression>

Example: 32 * 2 # == 64

See Also:

Name/Symbol: ^

Description: Raises one expression to the power of another expression

Usage: <expression> ^ <expression>

Example: 25 ^ 2 # == 625

See Also: Exp, NthRoot

Name/Symbol: ;

Description: Finishes a statement, can start new statement on the same line
(not needed at end of line)

Usage:

Example:

See Also:

Name/Symbol: #

112

Chapter 9. Detailed Function and Keyword Reference

Description: Comment indicator; anything until the next CR following this
character is ignored

Usage:

Example:

See Also:

Name/Symbol: <-

Description: The assignment operator. Assigns a value to a variable
N.B.: This two-character sequence takes the place of the `='
operator found in many programming languages.

Usage:

Example:

See Also:

Name/Symbol: ()

Description: Groups mathematical operations

Usage: (expression)

Example: (3 + 22) * 4 # == 100

See Also:

Name/Symbol: { }

Description: Groups a series of statements

Usage: { statement1

statement2

statement3

}

Example:

See Also:

Name/Symbol: []

113

Chapter 9. Detailed Function and Keyword Reference

Description: Creates a list. Closing] must be on same line as last element
of list, even for nested lists.

Usage: [<item1>, <item2>,]

Example: [] #Creates an empty list

[1,2,3] #Simple list

[[3,3,3],[2,2],0] #creates a nested list structure

See Also: List()

Name/Symbol: <

Description: Less than. Used to compare two numeric quantities.

Usage: 3 < 5

3 < value

Example: if(j < 33)

{

Print ("j is less than 33.")

}

See Also: >, >=, <=, ==, ~=, !=, <>

Name/Symbol: >

Description: Greater than. Used to compare two numeric quantities.

Usage: 5 > 3

5 > value

Example: if(j > 55)

{

Print ("j is greater than 55.")

}

See Also: <, >=, <=, ==, ~=, !=, <>

Name/Symbol: <=

Description: Less than or equal to.

Usage: 3<=5

3<=value

114

Chapter 9. Detailed Function and Keyword Reference

Example: if(j <= 33)

{

Print ("j is less than or equal to 33.")

}

See Also: <, >, >=, ==, ~=, !=, <>

Name/Symbol: >=

Description: Greater than or equal to.

Usage: 5>=3

5>=value

Example: if(j >= 55)

{

Print ("j is greater than or equal to 55.")

}

See Also: <, >, <=, ==, ~=, !=, <>

Name/Symbol: ==

Description: Equal to.

Usage: 4 == 4

Example: 2 + 2 == 4

See Also: <, >, >=, <=, ~=, !=, <>

Name/Symbol: <>, !=, ~=

Description: Not equal to.

Usage:

Example:

See Also: <, >, >=, <=, ==

115

Chapter 9. Detailed Function and Keyword Reference

9.2 A

Name/Symbol: Abs()

Description: Returns the absolute value of the number.

Usage: Abs(<num>)

Example: Abs(-300) # ==300

Abs(23) # ==23

See Also: Round(), Floor(), AbsFloor(), Sign(), Ceiling()

Name/Symbol: AbsFloor()

Description: Rounds <num> toward 0 to an integer.

Usage: AbsFloor(<num>)

Example: AbsFloor(-332.7) # == -332

AbsFloor(32.88) # == 32

See Also: Round(), Floor(), Abs(), Sign(), Ceiling()

Name/Symbol: ACos()

Description: Inverse cosine of <num>, in degrees.

Usage: ACos(<num>)

Example:

See Also: Cos(), Sin(), Tan(), ATan(), ATan()

Name/Symbol: AddObject()

116

Chapter 9. Detailed Function and Keyword Reference

Description: Adds a widget to a parent window, at the top of the object
stack. Once added, the object will be drawn onto the parent
last, meaning it will be on top of anything previously added.

In general, objects can be added to other objects as well as
windows. For example, you can add drawing objects (circles,
etc.) to an image to annotate the image and maintain its proper
x,y coordinates.

Also, if you 're-add' an object that is already on a widget, it
will get automatically removed from the window �rst. This is
an easy way to reorder elements on a screen.

AddObject(<obj>, <window>)

AddObject(<obj>, <canvas>)

AddObject(<obj>, <widget>)

Example:
define Start(p)

{

win <- MakeWindow()

img <- MakeImage("pebl.png")

circ <- Circle(20,20,10,MakeColor("red"),1)

AddObject(circ,img)

AddObject(img,win)

Move(img,100,100)

Draw()

WaitForAnyKeyPress()

}

See Also: RemoveObject()

Name/Symbol: and

Description: Logical and operator.

Usage: <expression> and <expression>

Example:

See Also: or, not

Name/Symbol: Append

117

Chapter 9. Detailed Function and Keyword Reference

Description: Appends an item to a list. Useful for constructing lists in con-
junction with the loop statement.

Note: Append() is useful, but ine�cent for large data struc-
tures, because it requires making a copy of the entire data
list and then overwriting it, if you use list <- Append(list,

item). The overhead will be hardly noticeable unless you are
building lists hundreds of elements long. In that case you
shuold either create the list upfront and use SetElement, or
you PushOnEnd to modify the list directly.

Usage: Append(<list>, <item>)

Example: list <- Sequence(1,5,1)

double <- []

loop(i, list)

{

double <- Append(double, [i,i])

}

Print(double)

Produces [[1,1],[2,2],[3,3],[4,4],[5,5]]

See Also: SetElement() List(), [], Merge(), PushOnEnd

Name/Symbol: AppendFile

Description: Appends onto the end of <file1> the contents of <file2>. Use-
ful for compiling pooled data at the end of an experiment.

Usage: AppendFile(<file1>, <file2>)

Example: :

The following open ten consecutive �les, writes 50 random num-
bers to each, then appends each to a master �le:

loop(j, Sequence(1,10,1))

{

file <- FileOpenWrite(j+".txt")

loop(i,Sequence(1,50,1))

{

FilePrint(file,j+","+i+","+Random())

}

AppendFile("master.txt",j+".txt")

}

See Also: FileOpenWrite()

118

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: ASin()

Description: Inverse Sine of <num>, in degrees.

Usage: ASin(<num>)

Example:

See Also: Cos(), Sin(), Tan(), ATan(), ACos(), ATan()

Name/Symbol: ATan

Description: Inverse Tan of <num>, in degrees.

Usage:

Example:

See Also: Cos(), Sin(), Tan(), ATan(), ACos(), ATan()

119

Chapter 9. Detailed Function and Keyword Reference

9.3 B

Name/Symbol: Bezier

Description: Creates a smoothed line through the points speci�ed by
<xpoints>, <ypoints>. The lists <xpoints> and <ypoints>

are adjusted by <x> and <y>, so they should be relative to 0,
not the location you want the points to be at.

Like other drawn objects, the bezier must then be added to the
window to appear. <steps> denotes how smooth the approxi-
mation will be.

Usage: Bezier(<x>,<y>,<xpoints>,<ypoints>,

<steps>,<color>)

Example: win <- MakeWindow()

#This makes a T

xpoints <- [-10,10,10,20,20,-20,-20,-10]

ypoints <- [-20,-20,40,40,50,50,40,40]

p1 <- Bezier(100,100,xpoints, ypoints,

5, MakeColor("black"))

AddObject(p1,win)

Draw()

See Also: BlockE(), Polygon(), MakeStarPoints(), MakeNGonPoints()

Name/Symbol: BlockE

Description: Creates a polygon in the shape of a block E, pointing in one of
four directions. Arguments include position in window.

� <x> and <y> is the position of the center

� <h> and <w> or the size of the E in pixels

� <thickness> thickness of the E

� <direction> speci�es which way the E points: 1=right,
2=down, 3=left, 4=up.

� <color> is a color object (not just the name)

Like other drawn objects, the Block E must then be added to
the window to appear.

Usage: BlockE(x,y,h,w,thickness,direction,color)

120

Chapter 9. Detailed Function and Keyword Reference

Example: win <- MakeWindow()

e1 <- BlockE(100,100,40,80,10,1,MakeColor("black"))

AddObject(e1,win)

Draw()

See Also: Plus(), Polygon(), MakeStarPoints(), MakeNGonPoints()

Name/Symbol: break

Description: Breaks out of a loop immediately.

Usage: break

Example: loop(i ,[1,3,5,9,2,7])

{

Print(i)

if(i == 3)

{

break

}

}

See Also: loop, return

121

Chapter 9. Detailed Function and Keyword Reference

9.4 C

Name/Symbol: Ceiling()

Description: Rounds <num> up to the next integer.

Usage: Ceiling(<num>)

Example: Ceiling(33.23) # == 34

Ceiling(-33.02) # == -33

See Also: Round(), Floor(), AbsFloor(), Ceiling()

Name/Symbol: ChooseN()

Description: Samples <number> items from list, returning a list in the original
order. Items are sampled without replacement, so once an item
is chosen it will not be chosen again. If <number> is larger than
the length of the list, the entire list is returned in order. It
di�ers from SampleN in that ChooseN returns items in the order
they appeared in the originial list, but SampleN is shu�ed.

Usage: ChooseN(<list>, <n>)

Example:
Returns 5 numbers

ChooseN([1,1,1,2,2], 5)

Returns 3 numbers from 1 and 7:

ChooseN([1,2,3,4,5,6,7], 3)

See Also: SampleN(), SampleNWithReplacement(), Subset()

Name/Symbol: Circle()

Description: Creates a circle for graphing at x,y with radius r. Circles must
be added to a parent widget before it can be drawn; it may be
added to widgets other than a base window. The properties
of circles may be changed by accessing their properties directly,
including the FILLED property which makes the object an out-
line versus a �lled shape.

Usage: Circle(<x>, <y>, <r>,<color>)

122

Chapter 9. Detailed Function and Keyword Reference

Example:
c <- Circle(30,30,20, MakeColor(green))

AddObject(c, win)

Draw()

See Also: Square(), Ellipse(), Rectangle(), Line()

Name/Symbol: CheckForNetworkConnection()

Description: Checks to see if there is an incoming TCP/IP connection on
a network that is opened using OpenNetworkListener. This is
an alternative to the WaitForNetworkConnection function that
allows more �exibility (and allows updating the during waiting
for the connection).

Usage: net <- CheckForNetwokConnection(network)

Example: network <- OpenNetworkListener(4444)

time <- GetTime()

while(not connected and (GetTime() < time + 5000))

{

connected <- CheckForNetwokConnection(network)

}

See Also: OpenNetworkListener(), Getdata(),
WaitForNetworkConnection(), CloseNetwork()

Name/Symbol: ClearEventLoop()

Description: Clears the event loop. This function is currently experimental,
and its usage may change in future versions of PEBL.

Usage: USAGE CURRENTLY UNDOCUMENTED

Example:

See Also: RegisterEvent(), StartEventLoop()

Name/Symbol: ClickCheckbox()

123

Chapter 9. Detailed Function and Keyword Reference

Description: This 'clicks' a checkbox, changing its status (both the visual
display and its .status property). Its state can also be set using
the SetCheckBox() function. The text "ClickCheckBox" is by
default bound to the .clickon property of any checkbox, enabling
you to handle on a number of graphical object the same (see
callfunction example). The [x,y] coordinates are ignored, and
so anything can be fed to them, but the standard approach is
to use give gClick, which is a global bound to the last click
coordinates when WaitForClickOnTarget is used.

Usage: ClickCheckBox(obj, [x,y])

Example: The following creates a button, waits for you to click on it, and
animates a button press

ok <- MakeCheckbox("OK?",400,250,gWin,150)

resp <- WaitForClickOnTarget([ok],[1])

ClickCheckBox(done,gClick)

Draw()

You can handle a bunch of objects together using an idiom like
this:

ok <- MakeCheckbox("OK?",400,250,gWin,150)

ok2 <- MakeCheckbox("Otherwise?",400,280,gWin,150)

checks <- [ok,ok2]

resp <- WaitForClickOnTarget(checks,[1,2])

check <- Nth(checks,resp)

CallFunction(check.clickon,[check,gClick])

Draw()

Examples of its use can be found in demo
ui.pbl

See Also: MakeCheckBox(), SetCheckBox()

Name/Symbol: Clickon()

Description: Calls the function named by the .clickon property of a cus-
tom object. Useful for handling click events of a bunch of
di�erent objects. This is essentially the same as CallFunc-
tion(obj.clickon, [obj,gClick]).

Usage: Clickon(obj,[x,y])

124

Chapter 9. Detailed Function and Keyword Reference

Example:
##This overrides buttons placement at the center:

done <- MakeButton("QUIT",400,250,gWin,150)

WaitForClickOnTarget([done],[1])

Clickon(done,gClick)

See Also: Inside(), ClickCheckbox MoveObject, DrawObject

Name/Symbol: ClickOnMenu()

Description: Handles clicking on a menu item. It will call the .clickon prop-
erty of that item, and then hide the menu.

Usage: ClickOnMenu(obj,[x,y])

This function is typically not used directly, but rather it is called
via MakeMenu. However, it can be used as a quick-and-dirty
button.

Example: This creates a menu and awaits clicking on. More complete
examples are available in ui.pbl. It requires that MyMessage is
created somewhere

menu1 <- MakeMenuItem("File",0,0,gWin,14,10,"MYMESSAGE")

menu2<- MakeMenu("Edit",70,0,gWin,14,10, "MYMESSAGE")

menus <- [menu1,menu2]

opt <- WaitForClickOntarget(menu,[1,2])

ClickOnMenu(Nth(menus,opt),gClick)

See Also: MakeMenu(), OpenSubMenus(), MakeMenuItem

Name/Symbol: ClickOnScrollbox()

Description: Handles a click event on the a ScrollBox. This should be called
after one checks (e.g., via InsideTB) whether the scrollbox was
actually clicked on. It will handle scrolling, moving via the
thumb, up/down arrows, and reselection. It is also used to
interact with ScrollingTextBox objects. This function name
is bound to the .clickon property of scrollboxes, so it can be
called using CallFunction (see example below).

125

Chapter 9. Detailed Function and Keyword Reference

Usage: ClickOnScrollbox(sb,[x,y])

Here, sb is the scrollbox object. [x,y] is a list of xy coordinates,
which can also be the global variable gClick

Example: See ui.pbl in the demo directory for examples of the use of a
scrolling text box. A brief example follows:

sb <- MakeScrollBox(Sequence(1,50,1),"The numbers",40,40,gWin,12,150,500,3)

Draw()

resp <- WaitForClickOntarget([sb],[1])

ClickOnScrollbox(sb,gClick)

#Alternately: CallFunction(sb.clickon,[sb,gClick])

##change the selected items

sb.list <- Sequence(sb.selected,sb.selected+50,1)

UpdateScrollbox(sb)

DrawScrollbox(sb)

Draw()

See Also: MakeScrollingTextBox MakeScrollBox UpdateScrollBox

DrawScrollBox

Name/Symbol: CloseNetworkConnection()

Description: Closes network connection

Usage: CloseNetwork(<network>)

Example: net <- WaitForNetworkConnection("localhost",1234)

SendData(net,"Watson, come here. I need you.")

CloseNetworkConnection(net)

Also see nim.pbl for example of two-way network connection.

See Also: ConnectToIP, ConnectToHost, WaitForNetworkConnection,
GetData, SendData, ConvertIPString

Name/Symbol: ConcatenateList()

126

Chapter 9. Detailed Function and Keyword Reference

Description: Combines a list together to form a single string. Like List-
ToString but defaults to a separator of " " (space).

Usage: ConcatenateList(<list>)

ConcatenateList(<list>,"|")

Example: ConcatenateList([1,2,3,444])

== "1 2 3 444"

ConcatenateList(["a","b","c","d","e"],",")

== "a,b,c,d,e"

See Also: SubString, StringLength, FoldList, ModList

Name/Symbol: ConnectToHost()

Description: Connects to a host computer waiting for a connection on
<port>, returning a network object that can be used to commu-
nicate. Host is a text hostname, like "myname.indiana.edu",
or use "localhost" to specify your current computer.

Usage: ConnectToHost(<hostname>,<port>)

Example: See nim.pbl for example of two-way network connection.

net <- ConnectToHost("localhost",1234)

dat <- GetData(net,20)

Print(dat)

CloseNetworkConnection(net)

See Also: ConnectToIP, GetData, WaitForNetworkConnection,
SendData, ConvertIPString, CloseNetworkConnection

Name/Symbol: ConnectToIP()

Description: Connects to a host computer waiting for a connection on
<port>, returning a network object that can be used to com-
municate. <ip> is a numeric ip address, which must be created
with the ConvertIPString(ip) function.

Usage: ConnectToIP(<ip>,<port>)

Example: See nim.pbl for example of two-way network connection.

127

Chapter 9. Detailed Function and Keyword Reference

ip <- ConvertIPString("192.168.0.1")

net <- ConnectToHost(ip,1234)

dat <- GetData(net,20)

Print(dat)

CloseNetworkConnection(net)

See Also: ConnectToHost, GetData, WaitForNetworkConnection,
SendData, ConvertIPString, CloseNetworkConnection

Name/Symbol: ConvertIPString()

Description: Converts an IP address speci�ed as a string into an integer that
can be used by ConnectToIP.

Usage: ConvertIPString(<ip-as-string>)

Example: See nim.pbl for example of two-way network connection.

ip <- ConvertIPString("192.168.0.1")

net <- ConnectToHost(ip,1234)

dat <- GetData(net,20)

Print(dat)

CloseNetworkConnection(net)

See Also: ConnectToHost, ConnectToIP, GetData,
WaitForNetworkConnection, SendData,
CloseNetworkConnection

Name/Symbol: ConvexHull()

Description: Computes the convex hull of a set of [x,y] points. It returns a
set of points that forms the convex hull, with the �rst and last
point identical. A convex hull is the set of outermost points,
such that a polygon connecting just those points will encompass
all other points, and such that no angle is acute. It is used in
MakeAttneave.

Usage: ConvexHull(<list-of-x-y-points>)

Example: pts <- [[0.579081, 0.0327737],

[0.0536094, 0.378258],

[0.239628, 0.187751],

[0.940625, 0.26526],

[0.508748, 0.840846],

[0.352604, 0.200193],

128

Chapter 9. Detailed Function and Keyword Reference

[0.38684, 0.212413],

[0.00114761, 0.768165],

[0.432963, 0.629412]]

Print(ConvexHull(pts))

output:

[[0.940625, 0.26526]

, [0.508748, 0.840846]

, [0.00114761, 0.768165]

, [0.0536094, 0.378258]

, [0.239628, 0.187751]

, [0.579081, 0.0327737]

, [0.940625, 0.26526]

See Also: MakeAttneave,

Name/Symbol: CopyFile()

Description: This makes a copy of a speci�ed �le, by Copying the contents of
one �le to another. This makes the copy byte-by-byte (so should
work for binary data). It is probably better to use a systemcall
function to make a copy of an entire �le at once. This is likely to
be slower and possibly error-prone (i.e., permissions and other
�le properties may not copy.), but it is a useful cross-platform
solution to creating a new �le based on others. It copies by
name from the current working directory.

Usage: CopyFile(<sourcefilename>,<destfilename>)

Example: base <- "template.txt"

CopyFile(base,"newfile.txt")

See Also: Format(), Tab()

Name/Symbol: CopyFromClipboard

Description: This copies text currently living in the system clipboard. Note
that (depending on platform), text copied into the clipboard
may not remain there after PEBL exits.

Usage: CopyFromClipboard()

129

Chapter 9. Detailed Function and Keyword Reference

Example: text <- CopyFromClipboard()

textbox.text <- text

See Also: CopyToClipboard()

Name/Symbol: CopyToClipboard

Description: Puts text into the the system clipboard, so that it can be ac-
cessed either by another program or by the Copyfromclipboard
function. Note that, possibly depending on platform, text
copied into the clipboard by PEBL may not stay there after
PEBL exits.

Usage: CopyToClipboard(<text>)

Example: text <- GetInput(textbox,"<enter>")

CopyToClipboard(text)

MessageBox("Text : " + text + " copied to clipboard",gWin)

See Also: CopyFromClipboard()

Name/Symbol: Cos()

Description: Cosine of <deg> degrees.

Usage:

Example: Cos(33.5)

Cos(-32)

See Also: Sin(), Tan(), ATan(), ACos(), ATan()

Name/Symbol: Countdown()

Description: Displays a 3-2-1 countdown on the screen in with 500 ms ISI.
CountDown temporarily hides whatever is on the screen. It is
useful in orienting participants to the �rst trial of a task.

Usage: CountDown(win)

Example: win <- MakeWindow()

MessageBox("Press any key to begin",win)

CountDown(win)

Trial()

130

Chapter 9. Detailed Function and Keyword Reference

See Also: MessageBox

Name/Symbol: CR()

Description: Produces <number> linefeeds which can be added to a string and
printed or saved to a �le. CR is an abbreviation for �Carriage
Return�.

Usage: CR(<number>)

Example: Print("Number: " Tab(1) + number + CR(2))

Print("We needed space before this line.")

See Also: Format(), Tab()

Name/Symbol: CrossFactorWithoutDuplicates()

Description: This function takes a single list, and returns a list of all pairs,
excluding the pairs that have two of the same item. To achieve
the same e�ect but include the duplicates, use:
DesignFullCounterBalance(x,x).

Usage: CrossFactorWithoutDuplicates(<list>)

Example: CrossFactorWithoutDuplicates([a,b,c])

== [[a,b],[a,c],[b,a],[b,c],[c,a],[c,b]]

See Also: DesignFullCounterBalance(), Repeat(),
DesignBalancedSampling(), DesignGrecoLatinSquare(),
DesignLatinSquare(), RepeatList(), LatinSquare(),
Shuffle()

Name/Symbol: CumNormInv()

Description: This function takes a probability and returns the corresponding
z-score for the cumulative standard normal distribution. It uses
an accurate numerical approximation from:
http://home.online.no/ pjacklam/notes/invnorm

Usage: CumNormInv(<p>)

Example:
Print(CumNormInv(0)) #= NA

Print(CumNormInv(.01)) #= -2.32634

Print(CumNormInv(.5)) #= 0

Print(CumNormInv(.9)) #= 1.28

Print(CumNormInv(1)) #= NA

131

Chapter 9. Detailed Function and Keyword Reference

See Also: NormalDensity(), RandomNormal()

132

Chapter 9. Detailed Function and Keyword Reference

9.5 D

Name/Symbol: define

Description: De�nes a user-speci�ed function.

Usage: define functionname (parameters)

{

statement1

statement2

statement3

#Return statement is optional:

return <value>

}

Example: See above.

See Also:

Name/Symbol: DegToRad()

Description: Converts degrees to radians.

Usage: DegToRad(<deg>)

Example: DegToRad(180) # == 3.14159...

See Also: Cos(), Sin(), Tan(), ATan(), ACos(), ATan()

Name/Symbol: DeleteFile()

Description: Deletes a �le from the �le system.

Usage: DeleteFile(<filename>)

Example: tmpfile <- FileOpenWrite("tmp.txt")

FilePrint(tmpfile,Random())

FileClose(tmpfile)

text <- FileReadText("tmp.txt")

DeleteFile("tmp.txt")

See Also: GetDirectoryListing(), FileExists(), IsDirectory(),
MakeDirectory()

133

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: DesignBalancedSampling()

Description: Samples elements �roughly� equally. This function returns a list
of repeated samples from <treatment_list>, such that each
element in <treatment_list> appears approximately equally.
Each element from <treatment_list> is sampled once without
replacement before all elements are returned to the mix and
sampling is repeated. If there are no repeated items in <list>,
there will be no consecutive repeats in the output. The last
repeat-sampling will be truncated so that a <length>-size list
is returned. If you don't want the repeated epochs this function
provides, Shu�e() the results.

Usage: DesignBalancedSampling(<list>, <length>)

Example: DesignBalancedSampling([1,2,3,4,5],12)

e.g., produces something like:

[5,3,1,4,2, 3,1,5,2,4, 3,1]

See Also: CrossFactorWithoutDuplicates(), Shuffle(),
DesignFullCounterBalance(), DesignGrecoLatinSquare(),
DesignLatinSquare(), Repeat(), RepeatList(),
LatinSquare()

Name/Symbol: DesignFullCounterbalance()

Description: This takes two lists as parameters, and returns a nested list of
lists that includes the full counterbalancing of both parameter
lists. Use cautiously; this gets very large.

Usage: DesignFullCounterbalance(<lista>, <listb>)

Example: a <- [1,2,3]

b <- [9,8,7]

DesignFullCounterbalance(a,b)

== [[1,9],[1,8],[1,7],

[2,9],[2,8],[2,7],

[3,9],[3,8],[3,7]]

See Also: CrossFactorWithoutDuplicates(), LatinSquare(),
Shuffle(), DesignBalancedSampling(),
DesignGrecoLatinSquare(), DesignLatinSquare(),
Repeat(), RepeatList(),

Name/Symbol: DesignGrecoLatinSquare()

134

Chapter 9. Detailed Function and Keyword Reference

Description: This will return a list of lists formed by rotating through each
element of the <treatment_list>s, making a list containing all
element of the list, according to a greco-latin square. All lists
must be of the same length.

Usage: DesignGrecoLatinSquare(<factor_list>,

<treatment_list>,

<treatment_list>)

Example: x <- ["a","b","c"]

y <- ["p","q","r"]

z <- ["x","y","z"]

Print(DesignGrecoLatinSquare(x,y,z))

produces: [[[a, p, x], [b, q, y], [c, r, z]],

[[a, q, z], [b, r, x], [c, p, y]],

[[a, r, y], [b, p, z], [c, q, x]]]

See Also: CrossFactorWithoutDuplicates(), LatinSquare(),
DesignFullCounterBalance(), DesignBalancedSampling(),
DesignLatinSquare(), Repeat(), RepeatList(), Shuffle()

Name/Symbol: DesignLatinSquare()

Description: This returns return a list of lists formed by rotating through
each element of <treatment_list>, making a list containing
all element of the list. Has no side e�ect on input lists.

Usage: DesignLatinSquare(<treatment1_list>,

<treatment2_list>)

Example: order <- [1,2,3]

treatment <- ["A","B","C"]

design <- DesignLatinSquare(order,treatment)

produces: [[[1, A], [2, B], [3, C]],

[[1, B], [2, C], [3, A]],

[[1, C], [2, A], [3, B]]]

See Also: CrossFactorWithoutDuplicates(),
DesignFullCounterBalance(), DesignBalancedSampling(),
DesignGrecoLatinSquare(), Repeat(), LatinSquare()

RepeatList(), Shuffle(), Rotate()

Name/Symbol: Dist()

Description: Returns Euclidean distance between two points. Each point
should be [x,y], and any additional items in the list are ignored.

135

Chapter 9. Detailed Function and Keyword Reference

Usage: Dist(<xylist1>, <xylist2>)

Example: p1 <- [0,0]

p2 <- [3,4]

d <- Dist(p1,p2) #d is 5

See Also:

Name/Symbol: Div()

Description: Returns round(<num>/<mod>)

Usage: Div(<num>, <mod>)

Example:

See Also: Mod()

Name/Symbol: Draw()

Description: Redraws the screen or a speci�c widget.

Usage: Draw()

Draw(<object>)

Example:

See Also: DrawFor(), Show(), Hide()

Name/Symbol: DrawFor()

Description: Draws a screen or widget, returning after <cycles> refreshes.
This function currently does not work as intended in the SDL
implementation, because of a lack of control over the refresh
blank. It may work in the future.

Usage: DrawFor(<object>, <cycles>)

Example:

See Also: Draw(), Show(), Hide()

Name/Symbol: DrawObject()

136

Chapter 9. Detailed Function and Keyword Reference

Description: Calls the function named by the .draw property of a custom
object. Useful for handling drawing of a bunch of di�erent
objects. This is essentially the same as CallFunction(obj.draw,
[obj]), but falls back to a normal Draw() command so it handles
built-in objects as well.

Usage: DrawObject(obj)

Example:
##This overrides buttons placement at the center:

done <- MakeButton("QUIT",400,250,gWin,150)

WaitForClickOnTarget([done],[1])

Clickon(done,gClick)

DrawObject(done)

See Also: Inside(), ClickOnCheckbox MoveObject, Draw

Name/Symbol: DrawPulldown()

Description: This handles layout/drawing of a pulldown box. This does not
actually call Draw() on the window, and so an additional draw
command is needed before the output is displayed. The main
use case for this function is if you need to manually change the
selected object (by changing .selected). This will redraw the
pulldown with the new selection.

Usage: DrawPullDown(object)

Example: options <- MakePulldownButton(["A",B","C"],400,250,gWin,14,100,1)

Draw()

WaitForAnyKeyPress()

options.selected <- 2

DrawPulldown(options)

Draw()

WaitForAnyKeyPress()

See Also: MakePullDown(), Pulldown(), UpdatePulldown

Name/Symbol: DrawScrollbox()

Description: Redraws a ScrollBox. This is called by various inter-
nal functions, but should be used to handle redrawing if
UpdateScrollbox is used. When things like the scrollbar, o�-
set, and selected item change, this can be called directly. If the

137

Chapter 9. Detailed Function and Keyword Reference

actual list is changed, UpdateScrollBox should be called �rst.
Note that the redrawn scrollbox won't be changed on the screen
until a Draw() command is issued.

Usage: DrawScrollBox(sb)

Here, sb is the scrollbox object.

Example: See ui.pbl in the demo directory for examples of the use of a
scrolling text box. A brief example follows:

sb <- MakeScrollBox(Sequence(1,50,1),"The numbers",40,40,gWin,12,150,500,3)

Draw()

resp <- WaitForClickOntarget([sb],[1])

CallFunction(sb.clickon,[sb,gClick])

#Alternately: ClickOnScrollbox(sb,gClick)

##change the selected items

sb.list <- Sequence(sb.selected,sb.selected+50,1)

UpdateScrollbox(sb)

DrawScrollbox(sb)

Draw()

See Also: MakeScrollingTextBox MakeScrollBox UpdateScrollBox

ClickOnScrollBox

138

Chapter 9. Detailed Function and Keyword Reference

9.6 E

Name/Symbol: EasyLabel()

Description: Creates and adds to the window location a label at speci�ed
location. Uses standard vera font with grey background. (May
in the future get background color from window). Easy-to-use
replacement for the MakeFont, MakeLabel, AddObject, Move,
steps you typically have to go through.

Usage: EasyLabel(<text>,<x>, <y>, <win>, <fontsize>)

Example: win <- MakeWindow()

lab <- EasyLabel("What?",200,100,win,12)

Draw()

See Also: EasyTextBox(), MakeLabel()

Name/Symbol: EasyTextBox()

Description: Creates and adds to the window location a textbox at speci-
�ed location. Uses standard vera font with white background.
Easy-to-use replacement for the MakeFont,MakeTextBox, Ad-
dObject, Move, steps.

Usage: EasyTextBox(<text>,<x>, <y>, <win>,

<fontsize>,<width>,<height>)

Example: win <- MakeWindow()

entry <- EasyTextBox("1 2 3 4 5",200,100,

win,12,200,50)

Draw()

See Also: EasyLabel(), MakeTextBox()

Name/Symbol: Ellipse()

Description: Creates a ellipse for graphing at x,y with radii rx and ry. El-
lipses are only currently de�nable oriented in horizontal/vertical
directions. Ellipses must be added to a parent widget before it
can be drawn; it may be added to widgets other than a base
window. The properties of ellipses may be changed by accessing
their properties directly, including the FILLED property which
makes the object an outline versus a �lled shape.

139

Chapter 9. Detailed Function and Keyword Reference

Usage: Ellipse(<x>, <y>, <rx>, <ry>,<color>)

Example:
e <- Ellipse(30,30,20,10, MakeColor(green))

AddObject(e, win)

Draw()

See Also: Square(), Circle(), Rectangle(), Line()

Name/Symbol: EndOfFile()

Description: Returns true if at the end of a �le.

Usage: EndOfFile(<filestream>)

Example: while(not EndOfFile(fstream))

{

Print(FileReadLine(fstream))

}

See Also:

Name/Symbol: EndOfLine()

Description: Returns true if at end of line.

Usage: EndOfLine(<filestream>)

Example:

See Also:

Name/Symbol: Enquote()

Description: Surrounds the argument with quotes.

Usage: Enquote("one two three")

Example: ##use to add quoted text to instructions.

instructions <- "Respond whenever you see an "+

Enquote("X")

##Use it for saving data that may have spaces:

resp <- GetInput(tb, "<enter>")

FilePrint(fileout, Enquote(resp))

140

Chapter 9. Detailed Function and Keyword Reference

See Also: gQuote

Name/Symbol: ExitQuietly()

Description: Stops PEBL and prints <message> to stderr. Unlike SignalFa-
talError, it will NOT pop-up a window with the error message.
Useful exiting a study or application without causing a popup
error message.

Usage: ExitQuietly(<message>)

Example:
If(response == "exit")

{

ExitQuietly("Exiting study.")

}

##Prints out error message and

##line/filename of function

See Also: MessageBox, Print(), SignalFatalError()

Name/Symbol: Exp()

Description: e to the power of <pow>.

Usage: Exp(<pow>)

Example: Exp(0) # == 1

Exp(3) # == 20.0855

See Also: Log()

Name/Symbol: ExtractListItems()

Description: Extracts items from a list, forming a new list. The list <items>
are the integers representing the indices that should be ex-
tracted.

Usage: ExtractListItems(<list>,<items>)

Example: myList <- Sequence(101, 110, 1)

ExtractListItems(myList, [2,4,5,1,4])

produces [102, 104, 105, 101, 104]

See Also: Subset(), SubList(), SampleN(), Filter()

141

Chapter 9. Detailed Function and Keyword Reference

9.7 F

Name/Symbol: FileClose()

Description: Closes a �lestream variable. Be sure to pass the variable name,
not the �lename.

Usage: FileClose(<filestream>)

Example: x <- FileOpenRead("file.txt")

Do relevant stuff here.

FileClose(x)

See Also: FileOpenAppend(), FileOpenRead(), FileOpenWrite()

Name/Symbol: FileExists()

Description: Checks whether a �le exists. Returns 1 if it exists, 0 otherwise.

Usage: FileExists(<path>)

Example: filename <- "data-"+gSubNum+".csv"

exists <- FileExists(filename)

if(exists)

{

MessageBox("Subject file already exists. "+

" Please try a new one.",gWin)

SignalFatalError("filename already used")

}

See Also: GetDirectoryListing(), FileExists(), IsDirectory(),
MakeDirectory()

Name/Symbol: FileOpenAppend()

Description: Opens a �lename, returning a stream that can be used for writ-
ing information. Appends if the �le already exists.

Usage: FileOpenAppend(<filename>)

Example:

See Also: FileClose(), FileOpenRead(), FileOpenWrite(),
FileOpenOverWrite()

142

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: FileOpenOverwrite()

Description: Opens a �lename, returning a stream that can be used for writ-
ing information. Overwrites if �le already exists. This function
should not be used for opening data �les; instead, use FileOpen-
Write, which saves to a backup �le if the speci�ed �le already
exists.

Usage: FileOpenOverWrite(<filename>)

Example:

See Also: FileClose(), FileOpenAppend(), FileOpenRead()

FileOpenWrite()

Name/Symbol: FileOpenRead()

Description: Opens a �lename, returning a stream to be used for reading
information.

Usage: FileOpenRead(<filename>)

Example:

See Also: FileClose(), FileOpenAppend(), FileOpenWrite(),
FileOpenOverWrite()

Name/Symbol: FileOpenWrite()

Description: Opens a �lename, returning a stream that can be used for writ-
ing information. If the speci�ed �lename exists, it won't over-
write that �le. Instead, it will create a related �lename, ap-
pending a -integer before the �lename extension.

Usage: FileOpenWrite(<filename>)

Example: In the following example, test.txt gets created with the text
�testing 1�, and then a second �le test-1.txt gets created with
the text �testing 2�.

f1 <- FileOpenWrite("test.txt")

FilePrint(f1,"testing 1")

FileClose(f1)

f2 <- FileOpenWrite("test.txt")

FilePrint(f2,"testing 2")

FileClose(f2)

143

Chapter 9. Detailed Function and Keyword Reference

See Also: FileClose(), FileOpenAppend(), FileOpenRead(),
FileOpenOverWrite()

Name/Symbol: FilePrint()

Description: Like Print, but to a �le. Prints a string to a �le, with a carriage
return at the end. Returns a copy of the string it prints.

Usage: FilePrint(<filestream>, <value>)

Example: FilePrint(fstream, "Another Line.")

See Also: Print(), FilePrint_()

Name/Symbol: FilePrint_()

Description: Like Print_, but to a �le. Prints a string to a �le, without
appending a newline character. Returns a copy of the string it
prints.

Usage: FilePrint_(<filestream>, <value>)

Example: FilePrint_(fstream, "This line doesn't end.")

See Also: Print_(), FilePrint()

Name/Symbol: FilePrintList()

Description: Prints a list to a �le, without the ','s or [] characters. Puts a
carriage return at the end. Returns a string that was printed.
If a list contains other lists, the printing will wrap multiple lines
and the internal lists will be printed as normal. To avoid this,
try FilePrintList(�le,Flatten(list)).

Usage: FilePrintList(<filestream>, <list>)

Example:
FilePrintList(fstream, [1,2,3,4,5,5,5])

##

Produces:

##1 2 3 4 5 5 5

FilePrintList(fstream,[[1,2],[3,4],[5,6]])

#Produces:

[1,2]

#,[3,4]

144

Chapter 9. Detailed Function and Keyword Reference

#,[5,6]

FilePrintList(fstream,Flatten([[1,2],[3,4],[5,6]]))

#Produces:

1 2 3 4 5 6

See Also: Print(), Print_(), FilePrint(), FilePrint_(),
PrintList(),

Name/Symbol: FileReadCharacter()

Description: Reads and returns a single character from a �lestream.

Usage: FileReadCharacter(<filestream>)

Example:

See Also: FileReadList(), FileReadTable() FileReadLine(),
FileReadText(), FileReadWord(),

Name/Symbol: FileReadLine()

Description: Reads and returns a line from a �le; all characters up until the
next newline or the end of the �le.

Usage: FileReadLine(<filestream>)

Example:

See Also: FileReadCharacter(),FileReadList(), FileReadTable()

FileReadText(), FileReadWord(),

Name/Symbol: FileReadList()

Description: Given a �lename, will open it, read in all the items into a list
(one item per line), and close the �le afterward. Ignores blank
lines or lines starting with #. Useful with a number of pre-
de�ned data �les stored in media/text/. See Section 4.25.5:
Provided Media Files.

Usage: FileReadList(<filename>)

Example: FileReadList("data.txt")

145

Chapter 9. Detailed Function and Keyword Reference

See Also: FileReadCharacter(), FileReadTable() FileReadLine(),
FileReadText(), FileReadWord(),

Name/Symbol: FileReadTable()

Description: Reads a table directly from a �le. Data in �le should separated
by spaces. Reads each line onto a sublist, with space-separated
tokens as items in sublist. Ignores blank lines or lines beginning
with #. Optionally, specify a token separator other than space.

Usage: FileReadTable(<filename>, <optional-separator>)

Example: a <- FileReadTable("data.txt")

See Also: FileReadCharacter(),FileReadList(), FileReadLine(),
FileReadText(), FileReadWord(),

Name/Symbol: FileReadText()

Description: Returns all of the text from a �le, ignoring any lines beginning
with #. Opens and closes the �le transparently.

Usage: FileReadText(<filename>)

Example: instructions <- FileReadText("instructions.txt")

See Also: FileReadCharacter(),FileReadList(), FileReadTable()

FileReadLine(), FileReadWord(),

Name/Symbol: FileReadWord()

Description: Reads and returns a `word' from a �le; the next connected
stream of characters not including a ' ' or a newline. Will
not read newline characters.

Usage: FileReadWord(<filestream>)

Example:

See Also: FileReadLine(), FileReadTable(), FileReadList()

FileReadCharacter(),FileReadList(), FileReadTable()

FileReadLine(), FileReadText(), FileReadWord(),

Name/Symbol: Filter()

146

Chapter 9. Detailed Function and Keyword Reference

Description: Returns a subset of <list>, depending on whether the
<filter> list is zero or nonzero. Both arguments must be lists
of the same length.

Usage: Filter(<list>,<filter>)

Example: x <- [1,2,3,3,2,2,1]

Print(Filter(x,[1,1,1,0,0,0,0])) ##==[1,2,3]

Print(Filter(x,Match(x,1))) ##== [1,1]

See Also: Match(), Subset(), Lookup()

Name/Symbol: FindInString()

Description: Finds a token in a string, returning the position (starting at a
particular position).

Usage: FindInString(<basestring>,<searchstring>,<startingpos>)

If the string is not found, the value 0 is returned.

Example: FindInString("about","bo",1) # == 2

FindInString("banana","na",1) # == 3

FindInString("banana","na",4) # == 5

See Also: SplitString()

Name/Symbol: First()

Description: Returns the �rst item of a list.

Usage: First(<list>)

Example: First([3,33,132]) # == 3

See Also: Nth(), Last()

Name/Symbol: Flatten()

Description: Flattens nested list <list> to a single �at list.

Usage: Flatten(<list>)

Example: Flatten([1,2,[3,4],[5,[6,7],8],[9]])

== [1,2,3,4,5,6,7,8,9]

Flatten([1,2,[3,4],[5,[6,7],8],[9]])

== [1,2,3,4,5,6,7,8,9]

147

Chapter 9. Detailed Function and Keyword Reference

See Also: FlattenN(), FoldList()

Name/Symbol: FlattenN()

Description: Flattens <n> levels of nested list <list>.

Usage: Flatten(<list>, <n>)

Example: Flatten([1,2,[3,4],[5,[6,7],8],[9]],1)

== [1,2,3,4,5,[6,7],8,9]

See Also: Flatten(), FoldList()

Name/Symbol: Floor()

Description: Rounds <num> down to the next integer.

Usage: Floor(<num>)

Example: Floor(33.23) # == 33

Floor(3.999) # ==3

Floor(-32.23) # == -33

See Also: AbsFloor(), Round(), Ceiling()

Name/Symbol: FoldList()

Description: Folds a list into equal-length sublists.

Usage: FoldList(<list>, <size>)

Example: FoldList([1,2,3,4,5,6,7,8],2)

== [[1,2],[3,4],[5,6],[7,8]]

See Also: FlattenN(), Flatten()

Name/Symbol: Format()

Description: Formats the printing of values to ensure the proper spacing. It
will either truncate or pad <value> with spaces so that it ends
up exactly <length> characters long. Character padding is at
the end.

Usage: Format(<value>, <length>)

148

Chapter 9. Detailed Function and Keyword Reference

Example:
x <- 33.23425225

y <- 23.3

Print("["+Format(x,5)+"]")

Print("["+Format(y,5)+"]")

Output:

[33.23]

[23.3]

See Also: CR() Tab()

149

Chapter 9. Detailed Function and Keyword Reference

9.8 G

Name/Symbol: GetAngle()

Description: Gets an angle (in degrees) from (0,0) of an x,y coordinate

Usage: GetAngle(<x>,<y>)

Example: ##point sprite in the direction of a click

sprite <- LoadImage("car.png")

AddObject(sprite,gWin)

Move(sprite,300,300)

xy <- WaitForDownClick()

newangle <- GetAngle(First(xy)-300,Second(xy)-300)

sprite.rotation <- newangle

Draw()

See Also: DegtoRad, RadToDeg

Name/Symbol: GetAngle3()

Description: Gets an angle (in radians) of abc.

Usage: GetAngle3(<a>,,<c>)

Example: a <- [0.579081, 0.0327737]

b <- [0.0536094, 0.378258]

c <- [0.239628, 0.187751]

Print(GetAngle3(a,b,c)) ## .2157

See Also: DegtoRad, RadToDeg, GetAngle, ToRight

Name/Symbol: GetCurrentScreenResolution()

Description: Returns an list of [width,height] specifying what the current
computer screen resolution is. This is used within the pebl
launcher in order to use the current resolution to run the ex-
periment.

Usage: res <- GetCurrentScreenResolution()

150

Chapter 9. Detailed Function and Keyword Reference

Example: define Start(p)

{

For testing, let's make the screen resolution a bit smaller than the

current one so that it doesn't get hidden by the bottom task bar

##

res <- GetCurrentScreenResolution()

gVideoWidth <- First(res)-100

gVideoHeight <- Second(res)-100

gWin <- MakeWindow()

MessageBox("Window slightly smaller than screen",gWin)

}

See Also: GetVideoModes()

Name/Symbol: GetCursorPosition()

Description: Returns an integer specifying where in a textbox the edit cursor
is. The value indicates which character it is on.

Usage: GetCursorPosition(<textbox>)

Example:

See Also: SetCursorPosition(), MakeTextBox(), SetText()

Name/Symbol: GetData()

Description: Gets Data from network connection. Example of usage in
demo/nim.pbl.

Usage: val <- GetData(<network>,<size>)

Example: On 'server':

net <- WaitForNetworkConnection("localhost",1234)

SendData(net,"Watson, come here. I need you.")

value <- GetData(net,10)

Print(value)

On Client:

net <- ConnectToHost("localhost",1234)

value <- GetData(net,20)

Print(value)

##should print out "Watson, come here. I need you."

151

Chapter 9. Detailed Function and Keyword Reference

See Also: ConnectToIP, ConnectToHost, WaitForNetworkConnection,
SendData, ConvertIPString, CloseNetworkConnection

Name/Symbol: GetDirectoryListing()

Description: Returns a list of �les and directories in a particular direc-
tory/folder.

Usage: list <- GetDirectoryListing(<path>)

Example: files <- GetDirectoryListing("./")

See Also: GetDirectoryListing(), FileExists(), IsDirectory(),
MakeDirectory()

Name/Symbol: GetDrivers()

Description: Gets a list of video drivers on the current platform. This is
usually one of opengl, opengles, software, and directx, di�erent
ones of which are available on di�erent platforms. This is most
useful for building launchers, although it could be used within a
script before MakeWindow is called to choose the best available
driver.

Usage: drivers <- GetDrivers()

See Also: GetCurrentScreenResolution, gVideoWidth, gVideoHeight,
GetVideoModes

Name/Symbol: GetEasyChoice()

Description: Hides what is on the screen and presents a textbox with spec-
i�ed message, and a series of options to select from. Returns
element from corresponding position of the <output> list.

Usage: GetEasyChoice(<message>,<list-of-choices>,

<output>,<window>)

152

Chapter 9. Detailed Function and Keyword Reference

Example: The code snippet below produces the following screen:

gWin <- MakeWindow("white")

inp <- GetEasyChoice("What Year are you in school",

["First-year","Sophomore",

"Junior","Senior","Other"],

[1,2,3,4,5], gWin)

See Also: MessageBox,GetEasyChoice, EasyTextBox

Name/Symbol: GetEasyInput()

Description: Hides what is on the screen and presents a textbox with speci-
�ed message, and a second text box to enter input. Continues
when 'enter' it hit at the end of text entry.

Usage:

153

Chapter 9. Detailed Function and Keyword Reference

GetEasyInput(<message>,<window>)

Example: gWin <- MakeWindow()

inp <- GetEasyInput("Enter Participant ID Code",gWin)

See Also: MessageBox() GetEasyChoice(), EasyTextBox()

Name/Symbol: GetInput()

Description: Allows user to type input into a textbox.

Usage: GetInput(<textbox>,<escape-key>)

Example:

See Also: SetEditable(), GetCursorPosition(), MakeTextBox(),
SetText()

Name/Symbol: GetJoystickAxisState

Description: This gets the state of a particular joystick axis. You need to
specify a joystick object, which is created with OpenJoystick().
You also need to specify the axis. You can determine how many
axes a joystick has with the GetNumJoystickAxes() function.
The function returns a value between 1 and 32768.

Usage: GetJoystickAxisState(js,1)

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetJoystickButtonState

Description: This gets the state of a particular joystick button. You need to
specify a joystick object, which is created with OpenJoystick().
You also need to specify the button. You can determine how
many buttons a joystick has with the GetNumJoystickButtons()
function. The function returns either 0 (for unpressed) or 1 (for
pressed).

Usage: GetJoystickButtonState(js,1)

154

Chapter 9. Detailed Function and Keyword Reference

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetJoystickBallState

Description: Not implemented.

Usage: GetJoystickBallState(js,1)

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetJoystickHatState

Description:

Usage: GetJoystickHatState(js,1) This gets the state of a particu-
lar joystick hat. You need to specify a joystick object, which
is created with OpenJoystick(). You also need to specify the
hat id. You can determine how many hats a joystick has with
the GetNumJoystickHats() function. The function returns a
value between 0 and 15, which is the sum of values specifying
whether each primary NSEW direction is pressed. The coding
is: 0=no buttons; 1=N, 2=E, 4=S, 8=W. Thus, if 1 is returned,
the north hat button is pressed. If 3 is returned, NorthEast. If
12 is returned, SW, and so on.

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetMouseCursorPosition()

Description: Gets the current x,y coordinates of the mouse pointer.

155

Chapter 9. Detailed Function and Keyword Reference

Usage: GetMouseCursorPosition()

Example:

pos <- GetMouseCursorPosition()

See Also: ShowCursor, WaitForMouseButton,
SetMouseCursorPosition, GetMouseCursorPosition

Name/Symbol: GetMouseState()

Description: Gets the current x,y coordinates of the mouse pointer, plus the
current state of the buttons. Returns a 5-element list, with
the �rst two indicating x,y position, the third is either 0 or
1 depending on if the left mouse is clicked, the fourth 0 or 2
depending on whether the middle mouse is clicked, and the �fth
either 0 or 4 depending on whether the right mouse is clicked.

Usage: GetMouseState()

Example: define Start(p)

{

win <- MakeWindow()

i <- 1

while(i < 100)

{

Draw()

Print(GetMouseState())

Wait(100)

i <- i + 1

}

##Returns look like:

[417, 276, 0, 0, 0]

[495, 286, 0, 0, 0]

[460, 299, 0, 0, 0]

[428, 217, 0, 0, 0]

[446, 202, 0, 0, 4]

[446, 202, 1, 0, 0]

[446, 202, 1, 0, 0]

[446, 202, 0, 2, 0]

See Also: ShowCursor WaitForMouseButton, SetMouseCursorPosition,
GetMouseCursorPosition

156

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: GetNewDataFile()

Description: Creates a data �le for output, asking for either append or
renumbering the subject code if the speci�ed �le is already in
use.

Usage: GetNewDataFile(subnum,win,basename,extension,header)

Here, subnum should be a subject code you want to use. win
should refer to the window a prompt will be displayed on if the
subject code is already in use. basename should be the base
�lename of the �le, and extension should be the . extension
(without the dot) at the end of the �le. Finally, header is what
will be printed on the �rst row of a �le.

When this �le is used, a 'data' subdirectory will �rst be created
in the current directory (i.e., the directory where the experiment
is). Then, a subdirectory will be created inside data based on
the subnum. Spaces and some other characters will be removed
to ensure easy and uniform access to this directory. Then, a
�lename will be created composed of:

data\subnum\basename-subnum.extension

If this �le does not exist, one will be created and the header
will be printed to the �rst line. If it does exist, you will be
prompted that the �le exists, and at that point you can choose
to either append to the existing �le (in which case no header
will be added), or choose a new subject code (in which case, a
new directory will be made). The process can repeat until you
either append or choose an unused �le.

Multiple �les can be made, and they will all appear in the sub-
num directory. If you get a �lename collision, you decision on
the �rst �le will carry forward on future �les, controlled by a
special global variable called gResetNumber.

Note that nearly all of the test battery tests use this function.
This can make pooling subject data more di�cult, but use the
combine data dialog in the launcher to easily combine data from
multiple �les in multiple subdirectories.

In all situations, the global variable gSubNum is set to the re-
sulting subject code (whether or not gSubNum is passed to this
function). This should only be called at the beginning of an
experiment, when the experimenter still has control of the com-
puter, in case a subject code is reused and a decision needs to
be made. Finally, the extension chosen has essentially nothing
to do with how the internals are formatted; it is up to you

157

Chapter 9. Detailed Function and Keyword Reference

Example: file1 <- GetNewDataFile("1",gWin,"memorytest","csv",

"sub,trial,word,answer,rt,corr")

##above creates a file data\1\memorytest-1.csv

file2 <- GetNewDataFile("1",gWin,"memorytest","csv",

"sub,trial,word,answer,rt,corr")

above will prompt you for new subject code

file3 <- GetNewDataFile("1",gWin,"memorytest-report","txt",

"")

##No header is needed on a text-based report file.

See Also: FileOpenWrite, FileOpenAppend, FileOpenOverwrite

Name/Symbol: GetNIMHDemographics()

Description: Gets demographic information that are normally required for
NIMH-related research. Currently are gender (M/F/prefer not
to say), ethnicity (Hispanic or not), and race (A.I./Alaskan,
Asian/A.A., Hawaiian, black/A.A., white/Caucasian, other). It
then prints their responses in a single line in the demographics
�le, along with any special code you supply and a time/date
stamp. This code might include a subject number, experiment
number, or something else, but many informed consent forms
assure the subject that this information cannot be tied back to
them or their data, so be careful about what you record. The
�le output will look something like:

31,Thu May 12 17:00:35 2011,F,hisp,asian,3331

32,Thu May 12 22:49:10 2011,M,nothisp,amind,3332

The �rst column is the user-speci�ed code (in this case, indi-
cating the experiment number). The middle columns indicate
date/time, and the last three columns indicate gender (M, F,
other), Hispanic (Y/N), and race.

Usage: GetNIMHDemographics(<code-to-print-out>,

<window>, <filename>)

Example: GetNIMHDemographics("x0413", gwindow,

"x0413-demographics.txt")

See Also:

158

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: GetNumJoystickAxes

Description: This gets the number of axes on a joystick. You need to specify
a joystick object, which is created with OpenJoystick().

Usage: GetNumJoystickAxes(js,1)

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetNumJoystickBalls

Description: This gets the number of joystick balls available on a particular
joystick. You need to specify a joystick object, which is created
with OpenJoystick().

Usage: GetNumJoystickBalls(js)

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetNumJoystickButtons

Description: This gets the number of joystick buttons available on a partic-
ular joystick. You need to specify a joystick object, which is
created with OpenJoystick().

Usage: GetNumJoystickButtons(js,1)

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

159

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: GetNumJoystickHats

Description: This gets the number of hats available on a particular joystick.
You need to specify a joystick object, which is created with
OpenJoystick().

Usage: GetNumJoystickHats(js,1)

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetNumJoysticks

Description: This gets the number of joysticks available on a system. It
returns an integer, which if greater than you can open a joystick
using the OpenJoystick() function..

Usage: GetNumJoysticks()

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

Name/Symbol: GetLineBreaks

Description: This gets linebreaks for a textbox. It is mainly used internally
for text rendering/layout, but could be useful in other contexts.

Usage: GetLineBreaks(<obj>)

This will return a list of character positions indicating the ac-
tual line breaks, either from wrapping in the textbox, or from
explicit newline characters.

Example: gWin <- MakeWindow()

obj <- EasyTextbox("test a b c

d e f

g h i j k

l m n o p q r

s t u v",30,30,gWin,22, 40,200)

160

Chapter 9. Detailed Function and Keyword Reference

breaks <- GetLinBreaks(obj)

Print("Number of lines:" + Length(breaks))

See Also:

Name/Symbol: GetParent

Description: This gets parent of a widget.

Usage: GetParent(<obj>)

Example: gWin <- MakeWindow()

obj <- EasyLabel("test",30,30,gWin,22)

later

win <- GetParent(obj) ##should be gWin

See Also:

Name/Symbol: GetPEBLVersion()

Description: Returns a string describing which version of PEBL you are run-
ning.

Usage: GetPEBLVersion()

Example: Print(GetPEBLVersion())

See Also: TimeStamp()

Name/Symbol: GetPixelColor()

Description: Gets a color object specifying the color of a particular pixel on
a widget.

Usage: color <- GetPixelColor(widget,x,y)

Example: ##Judge brightness of a pixel

img <- MakeImage("test.png")

col <- GetPixelColor(img,20,20)

hsv <- RGBtoHSV(col)

Print(Third(hsv))

161

Chapter 9. Detailed Function and Keyword Reference

See Also: SetPixel()

Name/Symbol: GetPPortState

Description: Gets the parallel port state, as a list of 8 'bits' (1s or 0s).

Usage: out <- SetPPortState(pport)

Example:

See Also: COMPortGetByte, COMPortSendByte, OpenPPort OpenCOMPort,
SetPPortMode, GetPPortState

Name/Symbol: GetProperty

Description: Gets a particular named property of an object. This works
for custom or built-in objects. If the property does not exist,
a fatal error will be signaled, and so you should check using
PropertyExists() if there is any chance the property does not
exist.

Usage: out <- GetProperty(obj,property)

Example: obj <- MakeCustomObject("myobject")

obj.taste <- "buttery"

obj.texture <- "creamy"

SetProperty(obj,"flavor","tasty")

list <- GetPropertyList(obj)

loop(i,list)

{

if(PropertyExists(obj,i)

{

Print(i + ": " + GetProperty(obj,i))

}

}

See Also: GetPropertyList, PropertyExists, SetProperty

MakeCustomObject, PrintProperties

Name/Symbol: GetPropertyList

Description: Gets a list of all of the properties an object has. This works for
custom or built-in objects.

162

Chapter 9. Detailed Function and Keyword Reference

Usage: out <- GetPropertyList(obj)

Example: obj <- MakeCustomObject("myobject")

obj.taste <- "buttery"

obj.texture <- "creamy"

SetProperty(obj,"flavor","tasty")

list <- GetPropertyList(obj)

loop(i,list)

{

if(PropertyExists(obj,i)

{

Print(i + ": " + GetProperty(obj,i))

}

}

See Also: GetProperty, PropertyExists, SetProperty

MakeCustomObject, PrintProperties

Name/Symbol: GetSize()

Description: Returns a list of [height, width], specifying the size of the
widget. The .width and .height properties can also be used
instead of this function

Usage: GetSize(<widget>)

Example: image <- MakeImage("stim1.bmp")

xy <- GetSize(image)

x <- Nth(xy, 1)

y <- Nth(xy, 2)

See Also:

Name/Symbol: GetSubNum()

Description: Creates dialog to ask user to input a subject code

Usage: GetSubNum(<win>)

Example: ## Put this at the beginning of an experiment,

after a window gWin has been defined.

##

if(gSubNum == 0)

{

163

Chapter 9. Detailed Function and Keyword Reference

gSubNum <- GetSubNum(gWin)

}

Note: gSubNum can also be set from the command line.

See Also:

Name/Symbol: GetSystemType()

Description: Returns a string identify what type of computer system you are
using. It will return either: OSX, LINUX, or WINDOWS.

Usage: GetSystemType()

Example: ## Put this at the beginning of an experiment,

after a window gWin has been defined.

if(GetSystemType() == "WINDOWS")

{

SignalFatalError("Experiment untested on windows")

}

See Also: SystemCall()

Name/Symbol: GetText()

Description: Returns the text stored in a text object (either a textbox or
a label). The .text properties can also be used instead of this
function.

Usage: GetText(<widget>)

Example:

See Also: SetCursorPosition(), GetCursorPosition(),
SetEditable(), MakeTextBox()

Name/Symbol: GetTextBoxCursorFromClick()

Description: Returns the position (in characters) corresponding to a x,y click
on a text box. The X,Y position must be relative to the x,y
position of the box, not absolute. Once obtained, the cursor
position can be set with SetCursorPosition().

Usage: GetTextBoxCursorFromClick(<widget>,<x>,<y>)

164

Chapter 9. Detailed Function and Keyword Reference

Example: win <- MakeWindow()

tb <- EasyTextBox("Click here to set cursor position"

,100,100,win,200,200)

Draw()

WaitForClickOnTarget([tb],[1])

#get the x and y cursor positions

relx <- First(gClick) - (tb.x)

rely <- Second(gClick) - (tb.y)

tb.cursorpos <- GetTextBoxCursorFromClick(tb,

relx,rely))

Draw()

WaitForAnyKeyPress()

See Also: SetCursorPosition(), GetCursorPosition(),
SetEditable(), MakeTextBox()

Name/Symbol: GetTime()

Description: Gets time, in milliseconds, from when PEBL was initialized. Do
not use as a seed for the RNG, because it will tend to be about
the same on each run. Instead, use RandomizeTimer().

Usage: GetTime()

Example: a <- GetTime()

WaitForKeyDown("A")

b <- GetTime()

Print("Response time is: " + (b - a))

See Also: TimeStamp()

Name/Symbol: GetVideoModes()

Description: Gets a list of useable video modes (in width/height pixel pairs),
as supplied by the video driver, for a speci�ed screen. Screen
is speci�ed as an integer, with 0 being the default screen. If no
screen is speci�ed, screen 0 is used.

Usage: modes <- GetVideoModes()

Example: Print(GetVideoModes)

##Might return:

[[1440, 900]

, [1360, 768]

, [1152, 864]

, [1024, 768]

165

Chapter 9. Detailed Function and Keyword Reference

, [960, 600]

, [960, 540]

, [840, 525]

, [832, 624]

, [800, 600]

, [800, 512]

, [720, 450]

, [720, 400]

, [700, 525]

]

See Also: GetCurrentScreenResolution, gVideoWidth, gVideoHeight,
GetDrivers

Name/Symbol: GetVocalResponseTime

Description: This is a simple audio amplitude voice key controlled by two
parameters ONLY AVAILABLE ON WINDOWS AND LINUX.

Usage: GetVocalResponseTime(buffer,

timethreshold,

energythreshold)

This is a simple function that fairly reliably gets an audio re-
sponse time. It works by recording audio to a bu�er, and com-
puting energy for 1-ms bins. When enough bins (whose num-
ber/duration is set by timethreshold) in a row surpass an energy
threshold (scaled from 0 to 1, set by energythreshold), record-
ing will stop, and the voice key will return. Reasonable values
depend on the amount of noise in your microphone, and the
types of vocal responses being made. The return time will lag
the detection time a bit, and so using the time it takes for the
function to return is an unreliable measure of vocal response
time.

It returns a list of three elements:

� Response time (in ms),

� End time (using ms counter),

� Responded �ag: either 0 or 1, depending on whether the
key was tripped,

If the responded �ag is 0, the other two numbers will be as well.

See number-stroop.pbl in the stroop directory of the test battery
and testaudioin.pbl in demo/ for examples.

166

Chapter 9. Detailed Function and Keyword Reference

Example:
buffer <- MakeAudioInputBuffer(5000)

resp0 <- GetVocalResponseTime(buffer,.35, 200)

SaveAudioToWaveFile("output.wav",buffer)

See Also: MakeAudioInputBuffer(), SaveAudioToWaveFile(),

167

Chapter 9. Detailed Function and Keyword Reference

9.9 H

Name/Symbol: Hide()

Description: Makes an object invisible, so it will not be drawn.

Usage: Hide(<object>)

Example: window <- MakeWindow()

image1 <- MakeImage("pebl.bmp")

image2 <- MakeImage("pebl.bmp")

AddObject(image1, window)

AddObject(image2, window)

Hide(image1)

Hide(image2)

Draw() # empty screen will be drawn.

Wait(3000)

Show(image2)

Draw() # image2 will appear.

Hide(image2)

Draw() # image2 will disappear.

Wait(1000)

Show(image1)

Draw() # image1 will appear.

See Also: Show()

168

Chapter 9. Detailed Function and Keyword Reference

9.10 I

Name/Symbol: if

Description: Simple conditional test.

Usage: if(test)

{

statements

to

be

executed

}

Example:

See Also:

Name/Symbol: if...elseif...else

Description: Complex conditional test. Be careful of spacing the else�if you
put carriage returns on either side of it, you will get a syntax
error. The elseif is optional, but multiple elseif statements
can be strung together. The else is also optional, although
only one can appear.

Usage: if(test)

{

statements if true

} elseif (newtest) {

statements if newtest true; test false

} else {

other statements

}

Example: if(3 == 1) {

Print("ONE")

}elseif(3==4){

Print("TWO")

}elseif(4==4){

Print("THREE")

}elseif(4==4){

Print("FOUR")

}else{Print("FIVE")}

See Also: if

169

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: Insert()

Description: Inserts an element into a list at a speci�ed position, returning
the new list. The original list in unchanged.

Usage: Insert(<[list]>,<item>,<position>)

Example: x <- [1,2,3,5]

y <- Insert(x,1,4)

##y== [1,2,3,1,5]

See Also: List(), Merge, Append

Name/Symbol: Inside()

Description: Determines whether an [x,y] point is inside another object.
Will operate correctly for rectangles, squares, circles, textboxes,
images, and labels. For custom objects having a function name
bound to their .inside property, it will use that function to test
for insideness. [xylist] can be a list containing [x,y], and if
it is longer the other points will be ignored (such as the list
returned by WaitForMouseButton(). Returns 1 if inside, 0 if
not inside.

Usage: Inside(<[xylist]>,<object>)

Example: button <- EasyLabel("Click me to continue", 100,100,gWin,12)

continue <- 1

while(continue)

{

xy <- WaitForMouseButton()

continue <- Inside(xy,button)

}

See Also: WaitForMouseButton(), GetMouseCursorPosition, InsideTB

Name/Symbol: InsideTB()

Description: Determines whether an [x,y] point is inside an object having
.x, .y, .width, and .height properties, with .x and .y representing
the upper left corner of the object. This is bound to the .inside
property of many custom ui objects. The Inside function will
use the function bound to the .inside property for any custom
object having that property, and so this function's use is mainly
hidden from users.

170

Chapter 9. Detailed Function and Keyword Reference

Usage: InsideTB([x,y],<obj>)

Example: pulldown <- MakePulldown(["one","two","three","four"],400-75,300,gWin,12,150,1)

if(InsideTB([300,300],pulldown))

{

Print("INSIDE")

}

See Also: Inside(), MoveObject ClickOn, DrawObject

Name/Symbol: IsAnyKeyDown()

Description:

Usage: IsAnyKeyDown()

Example:

See Also:

Name/Symbol: IsAudioOut()

Description: Tests whether <variant> is a AudioOut stream.

Usage: IsAudioOut(<variant>)

Example: if(IsAudioOut(x))

{

Play(x)

}

See Also: IsColor(), IsImage(), IsInteger(), IsFileStream(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsCanvas()

Description: Tests whether <variant> is a Canvas widget.

Usage: IsCanvas(<variant>)

Example: if(IsCanvas(x)

{

SetPixel(x,10,10,MakeColor("red"))

}

171

Chapter 9. Detailed Function and Keyword Reference

See Also: IsAudioOut(), IsImage(), IsInteger(), IsFileStream(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsText() IsWidget(),
IsWindow()

Name/Symbol: IsColor()

Description: Tests whether <variant> is a Color.

Usage: IsColor(<variant>)

Example: if(IsColor(x)

{

gWin <- MakeWindow(x)

}

See Also: IsAudioOut(), IsImage(), IsInteger(), IsFileStream(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsWidget(), IsWindow()

Name/Symbol: IsCustomObject()

Description: Tests whether <variant> is a Custom object (created with
MakeCustomObject.) Return 1 if so, 0 if not.

Usage: IsCustomObject(<obj>)

Example: if(IsCustomObject(obj)

{

MoveObject(obj,x,y)

} else {

Move(obj,x,y)

}

See Also: IsAudioOut(), IsImage(), IsInteger(), IsFileStream(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsText() IsWidget(),
IsWindow()

Name/Symbol: IsDirectory()

Description: Determines whether a named path is a directory. Returns 1 if
it exists and is a directory, and 0 otherwise.

Usage: IsDirectory(<path>)

172

Chapter 9. Detailed Function and Keyword Reference

Example: filename <- "data-"+gSubNum+".csv"

exists <- FileExists(filename)

if(exists)

{

out <- IsDirectory(filename)

Print(out)

}

See Also: GetDirectoryListing(), FileExists(), IsDirectory(),
MakeDirectory()

Name/Symbol: IsImage()

Description: Tests whether <variant> is an Image.

Usage: IsImage(<variant>)

Example: if(IsImage(x))

{

AddObject(gWin, x)

}

See Also: IsAudioOut(), IsColor(), IsInteger(), IsFileStream(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsInteger()

Description: Tests whether <variant> is an integer type. Note: a num-
ber represented internally as a �oating-point type whose is an
integer will return false. Floating-point numbers can be con-
verted to internally- represented integers with the ToInteger()
or Round() commands.

Usage: IsInteger(<variant>)

Example: x <- 44

y <- 23.5

z <- 6.5

test <- x + y + z

IsInteger(x) # true

IsInteger(y) # false

IsInteger(z) # false

IsInteger(test) # false

173

Chapter 9. Detailed Function and Keyword Reference

See Also: IsAudioOut(), IsColor(), IsImage(), IsFileStream(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsFileStream()

Description: Tests whether <variant> is a FileStream object.

Usage: IsFileStream(<variant>)

Example: if(IsFileStream(x))

{

Print(FileReadWord(x)

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFloat(), IsFont(), IsLabel(), IsList(), IsNumber(),
IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsFloat()

Description: Tests whether <variant> is a �oating-point value. Note that
�oating-point can represent integers with great precision, so
that a number appearing as an integer can still be a �oat.

Usage: IsFloat(<variant>)

Example: x <- 44

y <- 23.5

z <- 6.5

test <- x + y + z

IsFloat(x) # false

IsFloat(y) # true

IsFloat(z) # true

IsFloat(test) # true

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFont(), IsLabel(), IsList(),
IsNumber(), IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsFont()

Description: Tests whether <variant> is a Font object.

174

Chapter 9. Detailed Function and Keyword Reference

Usage: IsFont(<variant>)

Example: if(IsFont(x))

{

y <- MakeLabel("stimulus", x)

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsLabel(), IsList(),
IsNumber(), IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsKeyDown()

Description:

Usage:

Example:

See Also: IsKeyUp()

Name/Symbol: IsKeyUp()

Description:

Usage:

Example:

See Also: IsKeyDown()

Name/Symbol: IsLabel()

Description: Tests whether <variant> is a text Label object.

Usage: IsLabel(<variant>)

Example: if(IsLabel(x)

{

text <- GetText(x)

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsFont(), IsList(),
IsNumber(), IsString(), IsTextBox(), IsWidget()

175

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: IsList()

Description: Tests whether <variant> is a PEBL list.

Usage: IsList(<variant>)

Example: if(IsList(x))

{

loop(item, x)

{

Print(item)

}

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsFont(), IsLabel(),
IsNumber(), IsString(), IsTextBox(), IsWidget()

Name/Symbol: IsMember()

Description: Returns true if <element> is a member of <list>.

Usage: IsMember(<element>,<list>)

Example: IsMember(2,[1,4,6,7,7,7,7]) # false

IsMember(2,[1,4,6,7,2,7,7,7]) # true

See Also:

Name/Symbol: IsNumber()

Description: Tests whether <variant> is a number, either a �oating-point
or an integer.

Usage: IsNumber(<variant>)

Example: if(IsNumber(x))

{

Print(Sequence(x, x+10, 1))

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsFont(), IsLabel(),
IsList(), IsString(), IsTextBox(), IsWidget()

176

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: IsShape

Description: Tests whether <variant> is a drawable shape, such as a circle,
square rectangle, line, bezier curve, or polygon.

Usage: IsShape(<variant>)

Example: if(IsShape(x))

{

Move(x,300,300)

}

See Also: Square(), Circle(), Rectangle(), Line(), Bezier(),
Polygon() IsAudioOut(), IsColor(), IsImage(),
IsInteger(), IsFileStream(), IsFloat(), IsFont(),
IsLabel(), IsList(), IsNumber(), IsString(),
IsTextBox(), IsWindow()

Name/Symbol: IsString()

Description: Tests whether <variant> is a text string.

Usage: IsString(<variant>)

Example: if(IsString(x))

{

tb <- MakeTextBox(x, 100, 100)

}

See Also: IsText() IsAudioOut(), IsColor(), IsImage(),
IsInteger(), IsFileStream(), IsFloat(), IsFont(),
IsLabel(), IsList(), IsNumber(), IsTextBox(), IsWidget()

Name/Symbol: IsText()

Description: Tests whether <variant> is a text string. Same as IsString().

Usage: IsString(<variant>)

Example: if(IsText(x))

{

tb <- MakeTextBox(x, 100, 100)

}

177

Chapter 9. Detailed Function and Keyword Reference

See Also: IsString() IsAudioOut(), IsColor(), IsImage(),
IsInteger(), IsFileStream(), IsFloat(), IsFont(),
IsLabel(), IsList(), IsNumber(), IsTextBox(), IsWidget()

Name/Symbol: IsTextBox()

Description: Tests whether <variant> is a TextBox Object

Usage: IsTextBox(<variant>)

Example: if(IsTextBox(x))

{

Print(GetText(x))

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsFont(), IsLabel(),
IsList(), IsNumber(), IsString(), IsWidget()

Name/Symbol: IsWidget

Description: Tests whether <variant> is any kind of a widget object (image,
label, or textbox).

Usage: IsWidget(<variant>)

Example: if(IsWidget(x))

{

Move(x, 200,300)

}

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsFont(), IsLabel(),
IsList(), IsNumber(), IsString(), IsTextBox()

Name/Symbol: IsWindow

Description: Tests whether <variant> is a window.

Usage: IsWindow(<variant>)

Example: if(IsWindow(x))

{

AddObject(y,x)

}

178

Chapter 9. Detailed Function and Keyword Reference

See Also: IsAudioOut(), IsColor(), IsImage(), IsInteger(),
IsFileStream(), IsFloat(), IsFont(), IsLabel(),
IsList(), IsNumber(), IsString(), IsTextBox()

179

Chapter 9. Detailed Function and Keyword Reference

9.11 K

Name/Symbol: KaniszaPolygon

Description: Creates generic polygon, de�ned only by with �pac-man� circles
at speci�ed vertices.

Usage: KaniszaPolygon(<xypoints>, <vertices-to-show>,

<circle-size>, <fgcol>, <bgcol>,

<show-edge>)

Example: For detailed usage example, see:
http://peblblog.blogspot.com/2010/11/kanizsa-shapes.html

Part of a script using KaniszaPolygon:

#Specify the xy points

xys <- [[10,10],[10,50],[130,60],[100,100],[150,100],

[150,20],[80,-10],[45,10]]

#Specify which vertices to show (do all)

show <- [1,1,1,1,1,1,1,1]

#Make one, showing the line

x <- KaniszaPolygon(xys,show,10,fg,bg,1)

AddObject(x,gWin); Move(x,200,200)

#Make a second, not showing the line

x2 <- KaniszaPolygon(xys,show,10,fg,bg,0)

AddObject(x2,gWin); Move(x2,400,200)

#Make a third, only showing some vertices:

x3 <- KaniszaPolygon(xys,[1,1,1,1,1,0,0,1],10,fg,bg,0)

AddObject(x3,gWin); Move(x3,600,200)

See Also: Polygon(), KaneszaSquare()

180

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: KaniszaSquare

Description: Creates generic Kanesza Square, one de�ned only by with �pac-
man� circles at its vertices:

Usage: KaniszaSquare(<size>, <circ-rad>,<fgcol>, <bgcol>)

KaniszaSquare creates a graphical object that can be added to a
window, moved to the proper location, etc. Parameters specify
the size of the square, the size of the vertex circles, and the
foreground and background colors.

Example: For detailed usage example, see
http://peblblog.blogspot.com/2010/11/kanizsa-shapes.html

gWin <- MakeWindow()

square <- KaniszaSquare(150,20,MakeColor("red"),

MakeColor("green"))

AddObject(square,gWin)

Move(square,200,200)

Draw()

WaitForAnyKeyPress()

See Also: Polygon(), KaneszaPolygon()

181

Chapter 9. Detailed Function and Keyword Reference

9.12 L

Name/Symbol: Last()

Description: Returns the last item in a list. Provides faster access to the last
item of a list than does Nth().

Usage: Last(<list>)

Example: Last([1,2,3,444]) # == 444

See Also: Nth(), First()

Name/Symbol: LatinSquare()

Description: Quick and dirty latin square, taking on just one list argument.

Usage: LatinSquare(<list>)

Example: Print(LatinSquare([11,12,13,14,15,16]))

Output:

#[[11, 12, 13, 14, 15, 16]

#, [12, 13, 14, 15, 16, 11]

#, [13, 14, 15, 16, 11, 12]

#, [14, 15, 16, 11, 12, 13]

#, [15, 16, 11, 12, 13, 14]

#, [16, 11, 12, 13, 14, 15]

#]

See Also: DesignFullCounterBalance(), DesignBalancedSampling(),
DesignGrecoLatinSquare(), DesignLatinSquare(),
Repeat(), RepeatList(), Shuffle()

Name/Symbol: LaunchFile()

Description: Launch a speci�ed �le or URI with a platform-speci�c handler.

Usage: LaunchFile("filename")

Example: Example uses:

182

Chapter 9. Detailed Function and Keyword Reference

#open google:

LaunchFile("http://google.com")

#Open a .pbl file with text editor:

LaunchFile("test.pbl")

#Open a data directory in file manager:

LaunchFile("data\")

See Also: SystemCall()

Name/Symbol: LayoutGrid

Description: Creates a grid of x,y points in a range, that are spaced in a
speci�ed number of rows and columns. Furthermore, you can
specify whether they are vertical or horizontally laid out.

Usage: LayoutGrid(<xmin>,<xmax>,<ymin>,<ymax>,<culumns>,<rows>,<vertical>)

Example: Example PEBL Program using NonoverlapLayout:

define Start(p)

{

gWin <- MakeWindow()

gVideoWidth <- 800

gVideoHeight <- 300

lab1 <- EasyLabel("LayoutGrid, horizontal",

200,25,gWin,24)

lab2 <- EasyLabel("LayoutGrid, vertical",

600,25,gWin,24)

nums <- Sequence(1,20,1)

stim1 <- []

stim2 <- []

font <- MakeFont(gPeblBaseFont,0,25,

MakeColor("black"),MakeColor("white"),0)

loop(i,nums)

{

stim1 <- Append(stim1,MakeLabel(i+"",font))

stim2 <- Append(stim2,MakeLabel(i+"",font))

}

layout1 <- LayoutGrid(50,gVideoWidth/2-50,

50,gVideoHeight-50,5,4,0)

layout2 <- LayoutGrid(gVideoWidth/2+50,gVideoWidth-50,

183

Chapter 9. Detailed Function and Keyword Reference

50,gVideoHeight-50,5,4,1)

##Now, layout the stuff.

loop(i,Transpose([stim1,layout1]))

{

obj <- First(i)

xy <- Second(i)

AddObject(obj,gWin)

Move(obj, First(xy),Second(xy))

}

loop(i,Transpose([stim2,layout2]))

{

obj <- First(i)

xy <- Second(i)

AddObject(obj,gWin)

Move(obj, First(xy),Second(xy))

}

Draw()

WaitForAnyKeyPress()

}

The output of the above program is shown below. Even for
the left con�guration, which is too compact (and which takes a
couple seconds to run), the targets are fairly well distributed.

184

Chapter 9. Detailed Function and Keyword Reference

See Also: NonOverlapLayout()

Name/Symbol: Line()

Description: Creates a line for graphing at x,y ending at x+dx, y+dy. dx
and dy describe the size of the line. Lines must be added to
a parent widget before it can be drawn; it may be added to
widgets other than a base window. Properties of lines may be
accessed and set later.

Usage: Line(<x>, <y>, <dx>, <dy>, <color>)

Example: l <- Line(30,30,20,20, MakeColor("green")

AddObject(l, win)

Draw()

See Also: Square(), Ellipse(), Rectangle(), Circle()

Name/Symbol: List()

Description: Creates a list of items. Functional version of [].

Usage: List(<item1>, <item2>,)

Example: List(1,2,3,444) # == [1,2,3,444]

See Also: [], Merge(), Append()

Name/Symbol: ListBy()

Description: organizes a list into sublists, based on the elements of a second
list. It returns a list of two entities: (1) a condition list, de-
scribing what values were aggregated across; (2) the nested list
elements. The length of each element should be the same.

Together with Match and Filter, ListBy is useful for aggregating
data across blocks and conditions for immediate feedback.

Usage: ListBy(<list>, <conds>)

Example:
a <- Sequence(1,10,1)

b <- RepeatList([1,2],5)

x <- ListBy(a,b)

Print(x)

185

Chapter 9. Detailed Function and Keyword Reference

#[[1, 2],

[[1, 3, 5, 7, 9],

[2, 4, 6, 8, 10]]

#]

Print(ListBy(b,a))

#[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

[[1], [2], [1], [2], [1], [2], [1], [2], [1], [2]]]

See Also: List(), [], Merge(), Append()

Name/Symbol: ListToString()

Description: Converts a list of things to a single string

Usage: ListToString(<list>)

Example: ListToString([1,2,3,444]) # == "123444"

ListToString(["a","b","c","d","e"]) # == "abcde"

See Also: SubString, StringLength, ConcatenateList

Name/Symbol: Length()

Description: Returns the number of items in a list.

Usage: Length(<list>)

Example: Length([1,3,55,1515]) # == 4

See Also: StringLength()

Name/Symbol: Levels()

Description: Returns sorted list of unique elements of a list.

Usage: Levels(<list>)

Example: Levels([1,3,55,1,5,1,5]) # == [1,3,5,55]

See Also: Match(), Filter(), Sort()

186

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: LoadAudioFile()

Description: Loads an audio �le supported by the �mpeg library. It is nearly
identical to LoadMovie(), but only works for audio �les (.ogg,
.mp3, .wav, .ai�, .wma, et.). It creates a movie object, which
can then be played using PlayMovie() or StartPlayback() func-
tions. Currently, only supported on Windows and Linux.

The �mpeg (http://ffmpeg.org) library supports a wide
range of audio formats, including most .wav, .mp3, .ogg, .�ac,
.ai�, .wma, and others. Currently, there appears to sometimes
be playback problems if the audio stream is not stereo, so be
sure to convert your audio to stereo. Also, there appears to be
some problems with .�ac data formats.

If you have problems with playback, you should verify that your
media �le loads with another �mpeg media player.

Usage: LoadAudioFile(audiofile)

Example: movie <- LoadAudioFile("instuctions.mp3")

PrintProperties(inst)

PlayMovie(inst)

PausePlayback(insnt)

See Also: LoadMovie(), PlayMovie(),StartPlayback()
PausePlayback()

Name/Symbol: LoadMovie()

Description: Loads a movie �le using the �mpeg library. It creates a movie
object, which can then be played using PlayMovie() or Start-
Playback() functions. Currently, only supported on Windows
and Linux.

The �mpeg (http://ffmpeg.org) library supports a wide
range of video and audio formats, including most .mpg, .avi,
.ogg and .mp3 type formats. Audio-only formats should load
and play with LoadMovie, but another function, LoadAu-
dioFile(), has been created for these, as they do not need to
be added to a window to work.

If you have problems with playback, you should verify that your
media �le loads with another �mpeg media player.

For technical reasons, a movie MUST be loaded directly onto a
window, and not another widget.

Usage: LoadMovie(movie,window, width, height)

187

Chapter 9. Detailed Function and Keyword Reference

Example: movie <- LoadMovie("movie.avi",gWin,640,480)

PrintProperties(movie)

Move(movie,20,20)

Draw()

StartPlayback(movie)

Wait(500) #Play 500 ms of the movie.

PausePlayback(movie)

See Also: LoadAudioFile(), LoadMovie(),
PlayMovie(),StartPlayback() PausePlayback()

Name/Symbol: LoadSound()

Description: Loads a sound�le from <filename>, returning a variable that
can be played using the PlayForeground or PlayBackground
functions. LoadSound only loads uncompressed .wav �les, but
uses a background mixer to play them with fairly low latency.
In contrast, LoadAudioFile can load many di�erent multimedia
�les other than .wav, and uses a di�erent audio playback mech-
anism. LoadSound is appropriate for playing stimulus sounds
and feedback, whereas LoadAudioFile may be more appropri-
ate for instructions and longer feedback that should be encoded
e�ciently.

When the �le gets loaded, it gets automatically transcoded into
a stereo 44100-sampling rate audio stream, regardless of its orig-
inal playback rate. We have reports that in some cases, this
can cause some problems, especially if a mono �le gets loaded
multiple times in an experiment. If you experience playback
problems, try converting your audio to stereo 44100 hz and see
if it helps.

Usage: LoadSound(<filename>)

Example: woof <- LoadSound("dog.wav")

PlayBackground(woof)

Wait(200)

Stop(woof)

PlayForeground(woof)

See Also: PlayForeground, PlayBackground, LoadAudioFile,
LoadMovie

Name/Symbol: Log10()

Description: Log base 10 of <num>.

188

Chapter 9. Detailed Function and Keyword Reference

Usage: Log10(<num>)

Example:

See Also: Log2(), LogN(), Ln(), Exp()

Name/Symbol: Log2()

Description: Log base 2 of <num>.

Usage: Log2(<num>)

Example:

See Also: Log(), LogN(), Ln(), Exp()

Name/Symbol: LogN()

Description: Log base <base> of <num>.

Usage: LogN(<num>, <base>)

Example: LogN(100,10) # == 2

LogN(256,2) # == 8

See Also: Log(), Log2(), Ln(), Exp()

Name/Symbol: Lowercase()

Description: Changes a string to lowercase. Useful for testing user input
against a stored value, to ensure case di�erences are not de-
tected.

Usage: Lowercase(<string>)

Example: Lowercase("POtaTo") # == "potato"

See Also: Uppercase()

Name/Symbol: Ln()

Description: Natural log of <num>.

Usage: Ln(<num>)

189

Chapter 9. Detailed Function and Keyword Reference

Example:

See Also: Log(), Log2(), LogN(), Exp()

Name/Symbol: Lookup()

Description: Returns element in <database> corresponding to element of
<keylist> that matches <key>.

If no match exists, Match returns an empty list.

Usage: Lookup(<key>,<keylist>,<database>)

Example: keys <- [1,2,3,4,5]

database <- ["market","home","roast beef",

"none","wee wee wee"]

Print(Lookup(3,keys,database)))

Or, do something like this:

data <- [["punky","brewster"],

["arnold","jackson"],

["richie","cunningham"],

["alex","keaton"]]

d2 <- Transpose(data)

key <- First(data)

Print(Lookup("alex", key, data))

##Returns ["alex","keaton"]

See Also: Match

Name/Symbol: loop()

Description: Loops over elements in a list. During each iteration, <counter>
is bound to each consecutive member of <list>. If instead of a
list, an integer is given as the second argument, loop will create
a list of integers from 1 to that number and loop over them.

Usage: loop(<counter>, <list>)

{

statements

to

be

executed

190

Chapter 9. Detailed Function and Keyword Reference

}

or

loop(<counter>, <number>)

{

to-be-executed.

}

Example:See Also: while(), { }

191

Chapter 9. Detailed Function and Keyword Reference

9.13 M

Name/Symbol: MakeAttneave()

Description: Makes a random 'Attneave' �gure1. An Attneave �gure is a
complex polygon that can be used as a stimulus in a number of
situations. It returns a sequence of points for use in Polygon().

MakeAttneave uses ConvexHull, InsertAttneavePointRandom()
and ValidateAttneaveShape(), found in Graphics.pbl. Override
these to change constraints such as minimum/maximum side
lengths, angles, complexity, etc.

MakeAttneave uses a sampling-and-rejection scheme to create
in-bounds shapes. Thus, if you specify impossible or nearly-
impossible constraints, the time necessary to create shapes may
be very long or in�nite.

The arguments to MakeAttneave are:

� size: size, in pixels, of a circle from which points are sam-
pled in a uniform distribution.

� numpoints: number of points in the polygon.

� minangle: smallest angle acceptable (in degrees).

� maxangle: largest angle acceptable (in degrees).

Usage: MakeAttneave(size,numpoints,minangle,maxangle)

1(Collin, C. A., & Mcmullen, P. A. (2002). Using Matlab to generate families of similar
Attneave shapes. Behavior Research Methods Instruments and Computers, 34(1), 55-68.).

192

Chapter 9. Detailed Function and Keyword Reference

Example: gWin <- MakeWindow()

shape <- MakeAttneave(100,5+RandomDiscrete(5),5,170)

pts <- Transpose(shape)

poly <- Polygon(200,200,First(pts),Second(pts),

MakeColor("blue"),1)

AddObject(poly,gWin)

Draw()

WaitForAnyKeyPress()

See Also: MakeImage(), Polygon(), Square()

Name/Symbol: MakeAudioInputBuffer(<time-in-ms>)

Description: Creates a sound bu�er to use for audio recording or voicekey
sound input. It is currently very simple, allowing only to set
the duration. By default, it record mono at 44100 hz.

Usage: MakeAudioInputBuffer(<time-in-ms>)

See number-stroop.pbl in the stroop directory of the test battery
for examples.

Note: Version 0.12 seems to have some trouble specifying bu�ers
of di�erent lengths. 5000 seems to work, but others (3500?)
may not.

Example:
buffer <- MakeAudioInputBuffer(5000)

resp0 <- GetVocalResponseTime(buffer,.35, 200)

SaveAudioToWaveFile("output.wav",buffer)

See Also: GetVocalResponseTime(), SaveAudioToWaveFile(),

Name/Symbol: MakeButton()

Description: Creates a button on a window that can be clicked and launches
actions. The button is always 20 pixels high (using images in
media
images), with a rounded grey background. The label text will
be shrunk to �t the width, although this should be avoided as
it can look strange. A button is a custom object made from
images and text. It has a property 'clickon' that is bound to
'PushButton'

193

Chapter 9. Detailed Function and Keyword Reference

A button will look like this:

Usage: MakeButton(label,x,y,window,width)

Example: The following creates a button, waits for you to click on it, and
animates a button press

done <- MakeButton("QUIT",400,250,gWin,150)

resp <- WaitForClickOntarget([done],[1])

CallFunction(done.clickon,[done,gClick])

See Also: PushButton(), MakeCheckBox()

Name/Symbol: MakeCanvas()

Description: Makes a canvas object <x> pixels by y pixels, in color <color>.

A canvas is an object that other objects can be attached to, and
imprinted upon. When the canvas gets moved, the attached
objects move as well. The background of a canvas can be made
invisible by using a color with alpha channel == 0. The Setpixel
and SetPoint functions let you change individual pixels on a
canvas, to enable adding noise, drawing functional images, etc.
A canvas gets 'cleared' by calling ResetCanvas(canvas). Any
object added to a canvas creates an 'imprint' on the canvas
that remains if the object is moved. This allows you to use
another image as a paintbrush on the canvas, and lets you to
add noise to text. Because a text label gets re-rendered when
its drawn, if you want to add pixel noise to a stimulus, you can
create a label, add it to a canvas, then add pixel noise to the
canvas.

Usage: MakeCanvas(<x>, <y>, <color>)

Example: gWin <- MakeWindow()

clear <- MakeColor("white")

clear.alpha <- 0

#make a transparent canvas:

194

Chapter 9. Detailed Function and Keyword Reference

x <- MakeCanvas(300,300,clear)

AddObject(x,gWin)

Move(x,300,300)

img <- MakeImage("pebl.png")

AddObject(img,x)

Move(img,100,100)

Draw(x) #imprint the image on the canvas

Move(img,100,200)

Draw(x) #imprint the image on the canvas

Hide(img)

#draw a line on the canvas

i <- 10

red <- MakeColor("red")

while(i < 200)

{

SetPixel(x,20,i,red)

i <- i + 1

}

Draw()

WaitForAnyKeyPress()

See Also: MakeImage(), SetPixel(), MakeGabor(), ResetCanvas()

Name/Symbol: MakeCheckbox()

Description: Creates a checkbox on a window that can be clicked and keeps
track of its status. The checkbox uses a MakeButton object as
its base. The checkbox button is always 20 pixels high (using
images in media
images), with a rounded grey background. The label text will
be shrunk to �t the width, although this should be avoided as
it can look strange. It has a property 'clickon' that is bound to
ClickCheckBox, which �ips its state and updates the graphics.
It has a property state which is either 0 or 1, depending on the
state of the checkbox. Its initial state is 0. Its state can be set
using the SetCheckBox() function.

A checkbox will look like this:

Usage: MakeCheckBox(label,x,y,window,width)

195

Chapter 9. Detailed Function and Keyword Reference

Example: The following creates a button, waits for you to click on it, and
animates a button press

ok <- MakeCheckbox("OK?",400,250,gWin,150)

resp <- WaitForClickOnTarget([ok],[1])

CallFunction(done.clickon,[done,gClick])

Draw()

Alternately:

ok <- MakeCheckbox("OK?",400,250,gWin,150)

resp <- WaitForClickOnTarget([ok],[1])

ClickCheckBox(done,gClick)

Draw()

Examples of its use can be found in demo
ui.pbl

See Also: ClickCheckBox(), SetCheckBox()

Name/Symbol: MakeColor()

Description: Makes a color from <colorname> such as �red�, �green�, and
nearly 800 others. Color names and corresponding RGB values
can be found in doc/colors.txt.

Usage: MakeColor(<colorname>)

Example: green <- MakeColor("green")

black <- MakeColor("black")

See Also: MakeColorRGB(), RGBtoHSV()

Name/Symbol: MakeColorRGB()

Description: Makes an RGB color by specifying <red>, <green>, and <blue>

values (between 0 and 255).

Usage: MakeColorRGB(<red>, <green>, <blue>)

Example:

See Also: MakeColor(), RGBtoHSV()

196

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: MakeCustomObject

Description: Creates a 'custom' object that can encapsulate multiple prop-
erties. It takes a name as an argument, but this is currently
not accessible.

Usage: obj <- MakeCustomObject("mybutton")

Example: obj <- MakeCustomObject("myobject")

obj.taste <- "buttery"

obj.texture <- "creamy"

SetProperty(obj,"flavor","tasty")

list <- GetPropertyList(obj)

loop(i,list)

{

if(PropertyExists(obj,i)

{

Print(i + ": " + GetProperty(obj,i))

}

}

See Also: GetPropertyList, PropertyExists, SetProperty

IsCustomObject, PrintProperties ,GetProperty

Name/Symbol: MakeDirectory()

Description: Creates a directory with a particular name. It will have no
e�ect of the directory already exists.

Usage: FileExists(<path>)

Example: #create data subdirectory + subject-specific directory

MakeDirectory("data")

MakeDirectory("data/"+gsubnum)

filename <- "data/"+gsubnum+"/output.csv"

See Also: GetDirectoryListing(), FileExists(), IsDirectory(),
MakeDirectory()

Name/Symbol: MakeFont()

197

Chapter 9. Detailed Function and Keyword Reference

Description: Makes a font. The �rst argument must be a text name of a
font. The font can reside anywhere in PEBL's search path,
which would primarily include the media/fonts directory, and
the working directory (where the script is saved).

� style changes from normal to bold/underline, italic.

� fgcolor and bgcolor need to be colors, not just names of
colors

� if show-backing is 0, the font gets rendered with an invisi-
ble

� background; otherwise with a bgcolor background. (Note:
previous to PEBL 0.11, the �nal argument = 0 rendered
the font with non anti-aliased background, which I can see
almost no use for.)

Usage: MakeFont(<ttf_filename>, <style>, <size>,

<fgcolor>, <bgcolor>, <show-backing>)

Example: font <- MakeFont("Vera.ttf",0,22,MakeColor("black"),

MakeColor("white"),1)

See Also:

Name/Symbol: MakeGabor()

Description: Creates a greyscale gabor patch, with seven variables:

� size (in pixels) of square the patch is drawn on

� freq: frequency of grating (number of wavelengths in size)

� sd: standard deviation, in pixels, of gaussian window

� angle: angle of rotation of grating, in radians

� phase: phase o�set of grating (in radians)

� bglev: number between 0 and 255 indicating background
color in greyscale.

198

Chapter 9. Detailed Function and Keyword Reference

Usage: MakeGabor(<size>,<freq>,<sd>, <angle>,<phase>,<bglev>)

MakeGabor creates a canvas that can be used like any image.
It must be added to the window, placed, and drawn to ap-
pear. Typically, it can take several seconds to create a patch of
any large size, so it is usually best to create the gabor patches
when the test is initiatialized, or save and load images using
WritePNG().

Typically, a sd roughly 1/4 to 1/10 the size of size is necessary
to avoid vignetting.

Example: win <- MakeWindow()

patch <- MakeGabor(80, 0,10,0,0,100)

AddObject(patch,win)

Move(patch,200,200)

Draw()

See Also: MakeAttneave(), SetPixel()>, MakeCanvas()

Name/Symbol: MakeGraph()

Description: Creates a simple bargraph that can be added to/moved on a
window..

Usage: MakeGraph(data,xsize,ysize,x,y)

Here, data should be a set of number you want to graph.
xsize/ysize is the size of the graph in pixels, and x,y is the
x,y coordinate of the center of the graph on the screen.

This creates a custom object that gets returned. In addition,
its Move() Draw(), and Add() methods are overridden with the
functions MoveGraph(), DrawGraph(), and AddGraph().

See Also:

Name/Symbol: MakeImage()

Description: Makes an image widget from an image �le. .bmp formats should
be supported; others may be as well.

Usage:
MakeImage(<filename>)

Example:

See Also:

199

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: MakeLabel()

Description: Makes a text label for display on-screen. Text will be on a single
line, and the Move() command centers <text> on the speci�ed
point.

Usage: MakeLabel(<text>,)

Example:

See Also:

Name/Symbol: MakeMenu()

Description: Creates a menu containing multiple menu items, that
automatically call functions speci�ed by the command.

Usage: MakeMenu(label,x,y,window,fontsize, width, subitems,functions)

The subitems list should include the names of the menu options.
The functions list should be the same length, and contain the
function names called when one of those items is used. Make-
Menu uses MakeMenuItem to create each on of those items.
Menus can only be nested one-deep (no submenus allowed).

Example: This creates a menu and awaits clicking on. More complete
examples are available in ui.pbl. It requires that MyMessage is
created somewhere

menu1 <- MakeMenu("File",0,0,gWin,14,10,

["Open","Save","Save as","Quit"],

["MYMESSAGE","MYMESSAGE","MYMESSAGE","MYMESSAGE"])

200

Chapter 9. Detailed Function and Keyword Reference

menu2<- MakeMenu("Edit",70,0,gWin,14,10,

["Cut","Copy","Paste","Select"],

["MYMESSAGE","MYMESSAGE","MYMESSAGE","MYMESSAGE"])

menu <- [menu1,menu2]

opt <- WaitForClickOntarget(menu,[1,2])

ClickOnMenu(Nth(menu,opt),gClick)

See Also: MakeMenuItem(), OpenSubMenus(), ClickOnMenu

Name/Symbol: MakeMenuItem()

Description: Creates a single menu containing a label, whose .clickon prop-
erty is bound to some other function.

Usage: MakeMenuItem(label,x,y,window,fontsize, width, function)

This function is typically not used directly, but rather it is called
via MakeMenu. However, it can be used as a quick-and-dirty
button.

Example: This creates a menu and awaits clicking on. More complete
examples are available in ui.pbl. It requires that MyMessage is
created somewhere

menu1 <- MakeMenuItem("File",0,0,gWin,14,10,"MYMESSAGE")

menu2<- MakeMenu("Edit",70,0,gWin,14,10, "MYMESSAGE")

menus <- [menu1,menu2]

opt <- WaitForClickOntarget(menu,[1,2])

ClickOnMenu(Nth(menus,opt),gClick)

See Also: MakeMenu(), OpenSubMenus(), ClickOnMenu

Name/Symbol: MakeNGonPoints()

Description: Creates a set of points that form a regular n-gon. It can be
transformed with functions like RotatePoints, or it can be used
to create a graphical object with Polygon.

Note: MakeNGonPoints returns a list like:

201

Chapter 9. Detailed Function and Keyword Reference

[[x1, x2, x3,...],[y1,y2,y3,...]],

while Polygon() takes the X and Y lists independently.

Usage: MakeNGonPoints(<radius>, <num_peaks>)

Example: window <- MakeWindow()

ngonp <- MakeNGonPoints(50,10)

ngon <- Polygon(200,200,First(ngonp),Nth(ngonp,2),

MakeColor("red"),1)

AddObject(ngon,window)

Draw()

See Also: MakeStarPoints, Polygon, RotatePoints, ZoomPoints

Name/Symbol: MakePulldown()

Description: Creates a pulldown list that can be used to select an option.
The closed version is s always 20 pixels high. When opened, it
will be by default 15 rows high, although this is made smaller if
the pulldown is close to the bottom of the screen. A button is
a custom object made from images and text. It has a property
'clickon' that is bound to 'Pulldown'

A closed pulldown will look like this:

An open pulldown will look like this:

Usage: MakePulldown(options,x,y,window,fontsize,width,selected)

202

Chapter 9. Detailed Function and Keyword Reference

The options argument is a list of options you want to appear.
x and y are the coordinates of the upper left corner, window is
the name of the window (or other graphical object) it appears
on, fontsize is the size of the font, and width is the width of the
pulldown in pixels. The selected argument is the initial selected
list item.

Pulldown objects have a property .maxitems, that specify how
many elements are displayed. If the list contains more than
obj.maxitems, the pulldown will enable scrolling. A pulldown's
click-on handler is by default bound to the 'Pulldown' function.
When PullDown(obj,mousexy) is called, it will pop open the
pulldown, allow for a new option to be selected, and return. It
returns the index of the selected object, but the selected index
can also be accessed using obj.selected.

Example: See ui.pbl in the demo directory for examples of the use of
pulldowns. Pulldowns are also used within the PEBL launcher
for various purposes. A basic example is:

options <- MakePulldownButton(["A",B","C"],

400,250,gWin,14,100,1)

resp <- WaitForClickOntarget([options],[1])

CallFunction(options.clickon,[options,gClick])

See Also: PullDown(), DrawPulldown(), UpdatePulldown

Name/Symbol: MakeScrollBox()

Description: Creates a graphical object that displays and allows selection of
a list of items, and scrolls if the text gets too big.

It has a property 'clickon' that is bound to 'ClickOnScrollBox'

A Scrolling textbox looks like this:

203

Chapter 9. Detailed Function and Keyword Reference

Usage: MakeScrollBox(list,header,x,y,window,fontsize,

width,height,selected)

The list argument is a text block you want to display. header
is a label. x and y are the coordinates of the upper left corner,
window is the name of the window (or other graphical object) it
appears on, fontsize is the size of the font, and width and height
is the size of the scrollbox in pixels. selected indicates which
option is selected, and this selection (accessed via .selected) is
updated by users using ClickOnScrollBox, which is bound to
the .clickon property.

Several related function help update and draw a scrollbox. To
change the list or selected item, set the .list property to a new
list or .selected to new selection and then call UpdateScrollBox.
The function DrawScrollbox to manage redrawing drawing,
and ClickOnScrollBox to handle interaction (this is bound to
the .clickon property). .inside is bound to InsideTB A summary
of important properties:

� selected: which item is selected

� numitems: How many items on the list

� maxoffset: The most lines that can be displayed

204

Chapter 9. Detailed Function and Keyword Reference

� list: the list of options

� inside: bound to InsideTB

� clickon: bound to ClickOnScrollBox

Example: See ui.pbl in the demo directory for examples of the use of a
scrolling text box

sb <- MakeScrollBox(Sequence(1,50,1),"The numbers",40,40,gWin,12,150,500,3)

Draw()

resp <- WaitForClickOntarget([sb],[1])

CallFunction(sb.clickon,[sb,gClick])

#Alternately: ClickOnScrollbox(sb,gClick)

See Also: SetScrollingText MakeScrollingTextBox UpdateScrollBox

DrawScrollBox ClickOnScrollBox

Name/Symbol: MakeScrollingTextBox()

Description: Creates a graphical object that displays a block of text, and
scrolls if the text gets too big. It uses a Scrollbox as its base,
but handles parsing the text into lines and hides the selection
box. Thus, no 'selection' is displayed (although it actually ex-
ists), and a .text property is added to hold the text being dis-
played.

It has a property 'clickon' that is bound to 'ClickOnScrollBox'

A Scrolling textbox looks like this:

Usage: MakeScrollingTextBox(text,x,y,window,fontsize,

width,height,linewrap)

The text argument is a text block you want to display. x and y
are the coordinates of the upper left corner, window is the name

205

Chapter 9. Detailed Function and Keyword Reference

of the window (or other graphical object) it appears on, fontsize
is the size of the font, and width and height is the size of the
scrolling textbox in pixels. linewrap, if non-zero, will parse the
text layout so you see everything, breaking when the text gets
to the end of the box, and on linebreaks. if 0, it will only break
at explicit carriage returns.

Note that parsing text into the scrolling textbox is fairly fast,
but you may need workarounds for to display extremely long
�les if you want high responsiveness.

Several related function help update and draw a scrolling
textbox. To change the text, use SetScrollingText. Be-
cause a scrolling textbox is really just a scrollbox, you also use
DrawScrollbox to manage drawing, and ClickOnScrollBox to
handle interaction (this is bound to the .clickon property). .in-
side is bound to InsideTB

Example: See ui.pbl in the demo directory for examples of the use of a
scrolling text box

textscroll <- MakeScrollingTextBox("",200,50,gWin,12,

300,150,0)

SetScrollingText(textscroll,FileReadText("Uppercase.txt"))

Draw()

resp <- WaitForClickOntarget([textscroll],[1])

CallFunction(textscroll.clickon,[textscroll,gClick])

See Also: SetScrollingText MakeScrollBox UpdateScrollBox

DrawScrollBox ClickOnScrollBox

Name/Symbol: MakeSineWave()

Description: Creates a sine wave that can be played using the Play() or Play-
Background() functions. It will create a single-channel sound
at 44100 bitrate, 16 bit precision.

Usage: MakeSineWave(<duration_in_ms>, <hz>, <amplitude>)

� The �rst argument speci�es how long (in ms) the tone
should be.

� The second argument speci�es the frequency. Good values
range between 100 and 2000.

� The third argument speci�es the volume. It should be less
than 1.0.

206

Chapter 9. Detailed Function and Keyword Reference

Example:
##Make a sound that is 1000 ms, but just play 300 ms

sound <- MakeSineWave(200, 220, 1000)

PlayBackground(sound)

Wait(300)

Stop(sound)

See Also: PlayForeground(), PlayBackGround(), Stop()

Name/Symbol: MakeStarPoints()

Description: Creates a set of points that form a regular star. It can be
transformed with functions like RotatePoints, or it can be used
to create a graphical object with Polygon.

Note: MakeStarPoints returns a list:

[[x1, x2, x3,...],[y1,y2,y3,...]],

while Polygon() takes the X and Y lists independently.

Usage: MakeStarPoints(<outer_radius>, <inner_radius>,

<num_peaks>)

Example: window <- MakeWindow()

sp <- MakeStarPoints(50,20,10)

star <- Polygon(200,200,First(sp),Nth(sp,2),

MakeColor("red"),1)

AddObject(star,window)

Draw()

See Also: MakeNGonPoints, Polygon, RotatePoints, ZoomPoints

Name/Symbol: MakeTextBox()

Description: Creates a textbox in which to display text. Textboxes allow
multiple lines of text to be rendered; automatically breaking
the text into lines.

Usage: MakeTextbox(<text>,,<width>,<height>)

Example: font <-MakeFont("Vera.ttf", 1, 12, MakeColor("red"),

MakeColor("green"), 1)

tb <- MakeTextBox("This is the text in the textbox",

font, 100, 250)

207

Chapter 9. Detailed Function and Keyword Reference

See Also: MakeLabel(), GetText(), SetText(), SetCursorPosition(),
GetCursorPosition(), SetEditable()

Name/Symbol: MakeWindow()

Description: Creates a window to display things in. Background is speci�ed
by <color>.

Usage: MakeWindow(opt:<color>, opt:<width>,opt:<height>)

By default if no arguments are speci�ed, the function will create
a window with a black background. To specify the background
color, either use a color name or pass in a color object as the
�rst argument. The optional second and third arguments spec-
ify window size. If not speci�ed, the window size will be gVide-
oWidth,gVideoHeight, which are typically set to the current
screen resolution.

As of 2.0, multiple windows can be created and used.

Example: win <- MakeWindow()

gWin <- MakeWindow("white")

##make a second window for debugging or experimenter data entry.

gWin2 <- MakeWindow("black",400,200)

See Also:

Name/Symbol: MakeTextList()

Description: This takes a list and creates a block of text with carriage re-
turns, ensuring each item of the list is on its own line; it also
requires an o�set, skipping the �rst lines of the list. It is mostly
a helper function used by Scrollbox objects to help format. It
will make text out of the entire list, so you should be sure to
cut o� the end for e�ciency if you only want to display some
of the lines.

Usage: MakeTextList([<list>], <list-offset>,<prebuffer>)

Example: letters <- FileReadList("Uppercase.txt")

out <- MakeTextList(letters,20,"--")

The above code will create the following:

208

Chapter 9. Detailed Function and Keyword Reference

--u

--v

--w

--x

--y

--z

See Also: ListToString

Name/Symbol: Match()

Description: Returns a list of 0/1, indicating which elements of <list>match
<target>

Usage: Match(<list>,target)

Example: x <- [1,2,3,3,2,2,1]

Print(Match(x,1)) ##== [1,0,0,0,0,0,1]

Print(Match(x,2)) ##== [0,1,0,0,1,1,0]

Print(Match(x,3) ##== [0,0,1,1,0,0,0]

See Also: Filter(), Subset(), Lookup()

Name/Symbol: Max()

Description: Returns the largest of <list>.

Usage: Max(<list>)

Example: c <- [3,4,5,6]

m <- Max(c) # m == 6

See Also: Min(), Mean(), StDev()

Name/Symbol: MD5Sum()

Description: Computes MD5 sum of a text string. Returns blank if no string
provided<list>.

Usage: MD5Sum(<text>)

209

Chapter 9. Detailed Function and Keyword Reference

Example:
Print(MD5Sum(""))

#Return: d41d8cd98f00b204e9800998ecf8427e

Print(MD5Sum("bananana"))

#returns bb8e9af523e4aeffa88f1807fb2af9ce

text <- FileReadText("test.pbl")

Print(MD5Sum(text))

#returns: 3396a651bd3c96f9799ce02eecb48801; see similar example next

Print(MD5File("test.pbl"))

returns 3396a651bd3c96f9799ce02eecb48801

Print(MD5File("doesnotexist.txt"))

#returns 0

See Also: MD5File()

Name/Symbol: MD5File()

Description: Computes MD5 sum of a �le. Returns blank if no string
provided<list>.

Usage: MD5File(<filename>)

Example: text <- FileReadText("test.pbl")

Print(MD5Sum(text))

#returns: 3396a651bd3c96f9799ce02eecb48801; see similar example next

Print(MD5File("test.pbl"))

returns 3396a651bd3c96f9799ce02eecb48801

Print(MD5File("doesnotexist.txt"))

#returns 0

Print(MD5Sum(""))

#Return: d41d8cd98f00b204e9800998ecf8427e

Print(MD5Sum("bananana"))

#returns bb8e9af523e4aeffa88f1807fb2af9ce

See Also: MD5Sum()

Name/Symbol: Mean()

210

Chapter 9. Detailed Function and Keyword Reference

Description: Returns the mean of the numbers in <list>.

Usage: Mean(<list-of-numbers>)

Example: c <- [3,4,5,6]

m <- Mean(c) # m == 4.5

See Also: Median(), Quantile(), StDev(), Min(), Max()

Name/Symbol: Median()

Description: Returns the median of the numbers in <list>.

Usage: Median(<list-of-numbers>)

Example: c <- [3,4,5,6,7]

m <- Median(c) # m == 5

See Also: Mean(), Quantile(), StDev(), Min(), Max()

Name/Symbol: Merge()

Description: Combines two lists, <lista> and <listb>, into a single list.

Usage: Merge(<lista>,<listb>)

Example: Merge([1,2,3],[8,9]) # == [1,2,3,8,9]

See Also: [], Append(), List()

Name/Symbol: MessageBox()

Description: Hides what is on the screen and presents a textbox with speci-
�ed message, with a button to click at the bottom to continue.

Usage: MessageBox(<message>,<window>)

Example: gWin <- MakeWindow()

MessageBox("Click below to begin.",gWin)

See Also: GetEasyInput, EasyTextBox

Name/Symbol: Min()

211

Chapter 9. Detailed Function and Keyword Reference

Description: Returns the `smallest' element of a list.

Usage: Min(<list>)

Example: c <- [3,4,5,6]

m <- Min(c) # == 3

See Also: Max()

Name/Symbol: Mod()

Description: Returns <num>, <mod>, or remainder of <num>/<mod>

Usage: Mod(<num> <mod>)

Example: Mod(34, 10) # == 4

Mod(3, 10) # == 3

See Also: Div()

Name/Symbol: ModList()

Description: Modi�es each element of a list with a pre- and post- string. If
the list item is not a string, it will use whatever string it turns
into. This creates a new list, so it could be used to make a copy
of a string-based list.

Usage: ModList(<list>,<pre>,<post>)

ModList(list,"<",">") ##encloses each list item in brackets

Example: ModList([1,2,3,444]," ","")

ModList(["a","b","c","d","e"],",","-")

See Also: SubString, StringLength, FoldList, ConcatenateList,

Name/Symbol: Move()

Description: Moves an object to a speci�ed location. Images and Labels are
moved according to their center; TextBoxes are moved accord-
ing to their upper left corner.

Usage: Move(<object>, <x>, <y>)

Example: Move(label, 33, 100)

212

Chapter 9. Detailed Function and Keyword Reference

See Also: MoveCorner(), MoveCenter(), .X and .Y properties.

Name/Symbol: MoveCenter()

Description: Moves a TextBox to a speci�ed location according to its center,
instead of its upper left corner.

Usage: MoveCenter(<object>, <x>, <y>)

Example: MoveCenter(TextBox, 33, 100)

See Also: Move(), MoveCenter(), .X and .Y properties

Name/Symbol: MoveCorner()

Description: Moves a label or image to a speci�ed location according to its
upper left corner, instead of its center.

Usage: MoveCorner(<object>, <x>, <y>)

Example: MoveCorner(label, 33, 100)

See Also: Move(), MoveCenter(), .X and .Y properties

Name/Symbol: MoveObject()

Description: Calls the function named by the .move property of a custom
object. Useful if a custom object has complex parts that need
to be moved; you can bind .move to a custom move function and
then call it (and anything else) using MoveObject. MoveObject
will fall back on a normal move, so you can handle movement
of many built-in objects with it

Usage: MoveObject(obj,x,y)

Example:
##This overrides buttons placement at the center:

done <- MakeButton("QUIT",400,250,gWin,150)

done.move <- "MoveCorner"

MoveObject(done, 100,100)

See Also: Inside(), Move ClickOn, DrawObject

213

Chapter 9. Detailed Function and Keyword Reference

9.14 N

Name/Symbol: NonOverlapLayout

Description: Creates a set of num points in a xy range, that have a (soft)
minimum tolerance of 'tol' between points. That is, to the ex-
tent possible, the returned points will have a minumum distance
between them of <tol>. This may not be possible or be very
di�cult, and so after a limited number of attempts (by default,
100), the algorithm will return the current con�guration, which
may have some violations of the minimum tolerance rule, but
it will usually be fairly good.

The algorithm works by initializing with a random set of points,
then computing a pairwise distance matrix between all points,
�nding the closest two points, and resampling one of them until
its minumum distance is larger than the current. Thus, each in-
ternal iteration uniformly improves (or keeps the con�guration
the same), and the worst points are recon�gured �rst, so that
even if a con�guration that does not satisfy the constraints, it
will usually be very close.

Internally, the function (located in pebl-lib/Graphics.pbl) has a
variable that controls how many steps are taken, called �limit�,
which is set to 100. For very compacted or very large iterations,
this limit can be increased by editing the �le or making a copy
of the function.

The function usually returns fairly quickly, so it can often be
used real-time between trials. However, for complex enough
con�gurations, it can take on the order of seconds; furthermore,
more complex con�gurations might take longer than less com-
plex con�gurations, which could represent a potential confound
(if more complex stimuli have longer ISIs). Users should thus
consider creating the con�gurations when the test is initialized,
or created prior to the study and then saved out to a �le for
later use.

214

Chapter 9. Detailed Function and Keyword Reference

Usage: NonOverlapLayout(<xmin>,<xmax>,<ymin>,<ymax>,<tol>,<num>)

Example: Example PEBL Program using NonoverlapLayout:

define Start(p)

{

win <- MakeWindow()

Make 25 points in a square in the middle

of the screen, a minimum of 50 pixels apart.

This is too compact, but it will be OK.

points <- NonOverlapLayout(100,300,200,400,50,25)

circs <- []

##This should non-overlapping circles of radius 25

loop(i,points)

{

tmp <- Circle(First(i),Second(i),25,

MakeColor("blue"),0)

AddObject(tmp,win)

circs <- Append(circs,tmp)

}

rect1 <- Square(200,300,200,MakeColor("black"),0)

rect2 <- Square(600,300,200,MakeColor("black"),0)

AddObject(rect1,win)

AddObject(rect2,win)

##Reduce the tolerance: this one should be bettter

points <- NonOverlapLayout(500,700,200,400,50,15)

##This should non-overlapping circles of radius 15

loop(i,points)

{

tmp <- Circle(First(i),Second(i),

15,MakeColor("blue"),0)

AddObject(tmp,win)

circs <- Append(circs,tmp)

}

Draw()

WaitForAnyKeyPress()

}

215

Chapter 9. Detailed Function and Keyword Reference

The output of the above program is shown below. Even for
the left con�guration, which is too compact (and which takes a
couple seconds to run), the targets are fairly well distributed.

See Also: LayoutGrid()

Name/Symbol: not

Description: Logical not

Usage:

Example:

See Also: and, or

Name/Symbol: NormalDensity()

Description: Computes density of normal standard distribution

Usage: NormalDensity(<x>)

Example:

Print(NormalDensity(-100)) # 1.8391e-2171

Print(NormalDensity(-2.32635)) #5.97

Print(NormalDensity(0)) #0.398942

216

Chapter 9. Detailed Function and Keyword Reference

Print(NormalDensity(1.28155)) #.90687

Print(NormalDensity(1000)) #inf

See Also: RandomNormal(), CumNormInv()

Name/Symbol: Nth()

Description: Extracts the Nth item from a list. Indexes from 1 upwards.
Last() provides faster access than Nth() to the end of a list,
which must walk along the list to the desired position.

Usage: Nth(<list>, <index>)

Example: a <- ["a","b","c","d"]

Print(Nth(a,3)) # == 'c'

See Also: First(), Last()

Name/Symbol: NthRoot()

Description: <num> to the power of 1/<root>.

Usage: NthRoot(<num>, <root>)

Example:

See Also:

217

Chapter 9. Detailed Function and Keyword Reference

9.15 O

Name/Symbol: OpenCOMPort

Description: This opens a COM/Serial port, and is used by many usb devices
for communication.

The general process is to use OpenComPort to create the port,
and then send and receive text strings from that port. These
are sent one byte at a time. The mode argument is a 3-character
string that speci�es aspects of the mode (see Teunis van Beelen's
rs232 library at http://www.teuniz.net/RS-232/. The �rst
character is the data bits (5,6,7 or 8), parity (N=none, E=even,
O=odd), and the third is the stop bit (1 or 2 bits).

Within the demo directory, there is some basic code for commu-
nicating with the cedrus response box that uses these functions.
In addition, that script provide a NumToASCII() function that
can be useful in translating numbers to strings to communicate
with a device.

Usage: OpenCOMPort(<portnum>,<baud>,opt:<mode>)

Example: port <- OpenCOMPort(16,9600,"8N1")

Print(ComPortGetByte(port))

See Also: COMPortGetByte, COMPortSendByte, OpenPPort,
SetPPortMode, GetPPortMode

Name/Symbol: OpenJoystick

Description: This opens an available joystick, as speci�ed by its index. The
returned object can then be used in to access the state of the
joystick. It takes an integer argument, and for the most part,
if you have a single joystick attached to your system, you will
use OpenJoystick(1). If you want to use a second joystick, use
OpenJoystick(2), and so on.

Usage: OpenJoystick()

Example: See joysticktest.pbl in the demo directory

See Also: GetNumJoysticks(), OpenJoystick(), GetNumJoystickAxes()
GetNumJoystickBalls(), GetNumJoystickButtons(), Get-
NumJoystickHats() GetJoystickAxisState(), GetJoystickHat-
State(), GetJoystickButtonState()

218

http://www.teuniz.net/RS-232/

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: OpenNetworkListener()

Description: Creates a network object that listens on a particular port, and
is able to accept incoming connections. You can the nuse
CheckForNetworkConnections to accept incoming connec-
tions. This is an alternative to the WaitForNetworkConnection
function that allows more �exibility (and allows updating the
during waiting for the connection).

Usage: net <- OpennetworkListener(port)

Example: network <- OpenNetworkListener(4444)

time <- GetTime()

while(not connected and (GetTime() < time + 5000))

{

connected <- CheckForNetwokConnection(network)

}

See Also: CheckForNetworkConnection(), Getdata(),
WaitForNetworkConnection(), CloseNetwork()

Name/Symbol: OpenSubMenus()

Description: Used by ClickOnMenu to open, display a submenu and get a
click.

Usage: OpenSubMenus(obj,[x,y])

THis function is bound to the .clickon property of a menu. It
will open and display all the submenus, wait for a click, and
execute the function called.

Example: This creates a menu and awaits clicking on. More complete
examples are available in ui.pbl. It requires that MyMessage is
created somewhere

menu1 <- MakeMenuItem("File",0,0,gWin,14,10,"MYMESSAGE")

menu2<- MakeMenu("Edit",70,0,gWin,14,10, "MYMESSAGE")

menus <- [menu1,menu2]

opt <- WaitForClickOntarget(menu,[1,2])

ClickOnMenu(Nth(menus,opt),gClick)

219

Chapter 9. Detailed Function and Keyword Reference

See Also: MakeMenu(), OpenSubMenus(), MakeMenuItem

Name/Symbol: or

Description: Logical or

Usage:

Example:

See Also: and, not

Name/Symbol: OpenPPort

Description: Opens a Parallel port, returning an object that can be used for
parallel port communications.

Usage: OpenPPort(<name>) The <name> argument can be one of:
"LPT1", "LPT2", and "LPTX". Most likely, a parallel port
will be con�gured to LPT1, but other con�gurations are some-
times possible.

Example:

See Also: COMPortGetByte, COMPortSendByte, OpenCOMPort,
SetPPortMode, GetPPortMode

Name/Symbol: Order()

Description: Returns a list of indices describing the order of values by posi-
tion, from min to max.

Usage: Order(<list-of-numbers>)

Example: n <- [33,12,1,5,9]

o <- Order(n)

Print(o) #should print [3,4,5,2,1]

See Also: Rank()

220

Chapter 9. Detailed Function and Keyword Reference

9.16 P

Name/Symbol: PausePlayback()

Description: Pauses a playing movie or audio stream. This is used for movies
whose playback was initiated using StartPlayback, which then
ran as background threads during a Wait() function.

Usage: PausePlayBack(movie)

Example: movie <- LoadMovie("movie.avi",gWin,640,480)

PrintProperties(movie)

Move(movie,20,20)

Draw()

StartPlayback(movie)

Wait(500) #Play 500 ms of the movie.

PausePlayback(movie)

Wait(500)

See Also: LoadAudioFile(), LoadMovie(), PlayMovie(),
StartPlayback()

Name/Symbol: PlayForeground()

Description: Plays the sound `in the foreground'; does not return until the
sound is complete.

Usage: PlayForeground(<sound>)

Example: sound <- MakeSineWave(200, 220, 1000)

PlayForeground(sound)

See Also: PlayBackground(), Stop()

Name/Symbol: PlayBackground()

Description: Plays the sound `in the background', returning immediately.

Usage: PlayBackground(<sound>)

Example: sound <- MakeSineWave(200, 220, 1000)

PlayBackground(sound)

Wait(300)

Stop(sound)

221

Chapter 9. Detailed Function and Keyword Reference

See Also: PlayForeground(), Stop()

Name/Symbol: PlayMovie()

Description: Plays the movie (or other multimedia �le) loaded via either the
LoadMovie or LoadAudioFile function. Note that this function-
ality uses a di�erent underlying system than the sound playing
functions PlayBackground and PlayForeground, and they are
not interchangeable.

Usage: PlayMovie(movie)

Example: movie <- LoadMovie("movie.avi",gWin,640,480)

PrintProperties(movie)

Move(movie,20,20)

movie.volume <- .1

status <- EasyLabel("Demo Movie Player",300,25,gWin,22)

Draw()

PlayMovie(movie)

See Also: LoadAudioFile(), LoadMovie(), StartPlayback(),
PausePlayback()

Name/Symbol: Plus

Description: Creates a polygon in the shape of a plus sign. Arguments in-
clude position in window.

� <x> and <y> is the position of the center

� <size> or the size of the plus sign in pixels

� <width> thickness of the plus

� <color> is a color object (not just the name)

Like other drawn objects, the plus must then be added to the
window to appear.

Usage: Plus(x,y,size,width,color)

Example: win <- MakeWindow()

p1 <- Plus(100,100,80,15,MakeColor("red"))

AddObject(p1,win)

Draw()

See Also: BlockE(), Polygon(), MakeStarPoints(), MakeNGonPoints()

222

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: Polygon

Description: Creates a polygon in the shape of the points speci�ed by
<xpoints>, <ypoints>. The lists <xpoints> and <ypoints>

are adjusted by <x> and <y>, so they should be relative to 0,
not the location you want the points to be at.

Like other drawn objects, the polygon must then be added to
the window to appear.

Usage: Polygon(<x>,<y>,<xpoints>,<ypoints>,

<color>,<filled>)

Example: win <- MakeWindow()

#This makes a T

xpoints <- [-10,10,10,20,20,-20,-20,-10]

ypoints <- [-20,-20,40,40,50,50,40,40]

p1 <- Polygon(100,100,xpoints, ypoints,

MakeColor("black"),1)

AddObject(p1,win)

Draw()

See Also: BlockE(), Bezier(), MakeStarPoints(), MakeNGonPoints()

Name/Symbol: PopUpEntryBox()

Description: Creates a small text-entry box at a speci�ed location..

Usage: PopuUpEntryBox(<text>,<win>,[x,y])

Example: subnum <- PopUpEntryBox("Enter particpant code",gWin,[100,100])

See Also: MessageBox GetEasyInput, PopUpMessageBox

Name/Symbol: PopUpMessageBox()

Description: Creates a small 300x200 information box at the current cursor
location, but also adjusts so it is on the screen. It must be
dismissed by clicking the 'OK' button.

Usage: PopuUpMessageBox(<text>,<win>)

Note that the function puts the box on the screen at the current
mouse position. If you want control over where it goes, you need
to use SetMouseCursorPosition immediately before the box is
made.

223

Chapter 9. Detailed Function and Keyword Reference

Example: subnum <- PopUpMessageBox("There has been an error.",gWin)

See Also: MessageBox GetEasyInput, PopUpEntryBox

Name/Symbol: Print()

Description: Prints <value> to stdout (the console [Linux] or the �le
stdout.txt [Windows]), and then appends a newline after-
wards.

Usage: Print(<value>)

Example: Print("hello world")

Print(33 + 43)

x <-Print("Once")

See Also: Print_(), FilePrint()

Name/Symbol: Pow()

Description: Raises or lowers <num> to the power of <pow>.

Usage: Pow(<num>, <pow>)

Example: Pow(2,6) # == 64

Pow(5,0) # == 1

See Also:

Name/Symbol: Print()

Description: Prints <value> to stdout (the console [Linux] or the �le
stdout.txt [Windows]), and then appends a newline after-
wards.

Usage: Print(<value>)

Example: Print("hello world")

Print(33 + 43)

x <-Print("Once")

See Also: Print_(), FilePrint()

224

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: PrintProperties()

Description: Prints .properties/values for any complex object. These include
textboxes, fonts, colors, images, shapes, etc. Mostly useful as a
debugging tool.

Usage: PrintProperties(<object>)

Example:

win <- MakeWindow()

tb <- EasyTextbox("one",20,20,win,22,400,80)

PrintProperties(tb)

##Output:

[CURSORPOS]: 0

[EDITABLE]: 0

[HEIGHT]: 80

[ROTATION]: 0

[TEXT]: one

[VISIBLE]: 1

[WIDTH]: 400

[X]: 20

[Y]: 20

[ZOOMX]: 1

[ZOOMY]: 1

See Also: Print()

Name/Symbol: Print_()

Description: Prints <value> to stdout; doesn't append a newline afterwards.

Usage: Print_(<value>)

Example: Print_("This line")

Print_(" ")

Print_("and")

Print_(" ")

Print("Another line")

prints out: 'This line and Another line'

225

Chapter 9. Detailed Function and Keyword Reference

See Also: Print(), FilePrint()

Name/Symbol: PrintList()

Description: Prints a list, without the ','s or [] characters. Puts a carriage
return at the end. Returns a string that was printed. If a list
contains other lists, the printing will wrap multiple lines and
the internal lists will be printed as normal. To avoid this, try
PrintList(Flatten(list)).

Usage: PrintList(<list>)

Example: PrintList([1,2,3,4,5,5,5])

##

Produces:

##1 2 3 4 5 5 5

PrintList([[1,2],[3,4],[5,6]])

#Produces:

[1,2]

#,[3,4]

#,[5,6]

PrintList(Flatten([[1,2],[3,4],[5,6]]))

#Produces:

1 2 3 4 5 6

See Also: Print(), Print_(), FilePrint(), FilePrint_(),
FilePrintList(),

Name/Symbol: PropertyExists

Description: Tests whether a particular named property exists. This works
for custom or built-in objects. This is important to check prop-
erties that might not exist, because trying to GetProperty of a
non-existent property will cause a fatal error.

Usage: out <- PropertyExists(obj,property)

Example: obj <- MakeCustomObject("myobject")

obj.taste <- "buttery"

obj.texture <- "creamy"

SetProperty(obj,"flavor","tasty")

list <- GetPropertyList(obj)

226

Chapter 9. Detailed Function and Keyword Reference

loop(i,list)

{

if(PropertyExists(obj,i)

{

Print(i + ": " + GetProperty(obj,i))

}

}

See Also: GetPropertyList, GetProperty, SetProperty

MakeCustomObject, PrintProperties

Name/Symbol: Pulldown()

Description: This handles making a new selection on a pulldown box.

Usage: Pulldown(object, [x,y])

This function is typically the primary way of interacting with
a pulldown box. It will have the e�ect of opening the pull-
down box, waiting for the user to select a new option, and then
changing the selected option to whatever they click on.

Example: See demo
ui.pbl for examples of the use of pulldowns. Pulldowns are also
used within the PEBL launcher for various purposes. A basic
example is:

options <- MakePulldownButton(["A",B","C"],400,250,gWin,14,100,1)

resp <- WaitForClickOntarget([options],[1])

newvalue <- Pulldown(options,gClick)

See Also: MakePullDown(), DrawPulldown(), UpdatePulldown

Name/Symbol: PushButton

Description: Animates a button-pushing. It takes a button created using the
MakeButton function and will animate a downclick when the
mouse is down, and release when the mouse is unclicked. To
conform with general object handlers, it requires specifying a
mouse click position, which could be [0,0], or gclick. This func-
tion is bound to the property 'clickon' of any button, allowing
you to handle mouse clicks universally for many di�erent ob-
jects.

227

Chapter 9. Detailed Function and Keyword Reference

Usage: PushButton(button, xylist)

Example: The following creates a button, waits for you to click on it, and
animates a button press

done <- MakeButton("QUIT",400,250,gWin,150)

resp <- WaitForClickOntarget([done],[1])

PushButton(done,[0,0])

To handle multiple buttons, you can do:

done <- MakeButton("QUIT",400,250,gWin,150)

ok <- MakeButton("OK",400,250,gWin,150)

resp <- 2

while (resp != 1)

{

Draw()

resp <- WaitForClickOntarget([done,ok],[1,2])

obj <- Nth([done,ok],resp)

CallFunction(obj.clickon,[obj,gClick])

}

See Also: MakeCheckBox()

Name/Symbol: PushOnEnd

Description: Pushes an item onto the end of a list, modifying the list itself.

Note: PushOnEnd is a more e�cient replacement for Append().
Unlike Append, it will modify the original list as a side e�ect,
so the following works:

PushOnEnd(list, item)

There is no need to set the original list to the result of PushOn-
End, like you must do with Append. However, it does in fact
work, and incurs only a slight overhead, so that Append can
often be replaced with PushOnEnd without worry.

list <- PushOnEnd(list, item)

Usage: PushOnEnd(<list>, <item>)

228

Chapter 9. Detailed Function and Keyword Reference

Example: list <- Sequence(1,5,1)

double <- []

loop(i, list)

{

PushOnEnd(double, [i,i])

}

Print(double)

Produces [[1,1],[2,2],[3,3],[4,4],[5,5]]

See Also: SetElement() List(), [], Merge(), PushOnEnd

229

Chapter 9. Detailed Function and Keyword Reference

9.17 Q

Name/Symbol: Quantile()

Description: Returns the <num> quantile of the numbers in <list>. <num>

should be between 0 and 100

Usage: Quantile(<list>, <num>)

Example: ##Find 75th percentile to use as a threshold.

thresh <- Quantile(rts,75)

See Also: StDev(), Median(), Mean(), Max(), Min()

230

Chapter 9. Detailed Function and Keyword Reference

9.18 R

Name/Symbol: RadToDeg()

Description: Converts <rad> radians to degrees.

Usage: RadToDeg(<rad>)

Example:

See Also: DegToRad(), Tan(), Cos(), Sin(), ATan(), ASin(), ACos()

Name/Symbol: Random()

Description: Returns a random number between 0 and 1.

Usage: Random()

Example: a <- Random()

See Also: Random(), RandomBernoulli(), RandomBinomial(),
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomNormal(),
RandomUniform(), RandomizeTimer(), SeedRNG()

Name/Symbol: RandomBernoulli()

Description: Returns 0 with probability (1-<p>) and 1 with probability <p>.

Usage: RandomBernoulli(<p>)

Example: RandomBernoulli(.3)

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomNormal(),
RandomUniform(), RandomizeTimer(), SeedRNG()

Name/Symbol: RandomBinomial

Description: Returns a random number according to the Binomial distribu-
tion with probability <p> and repetitions <n>, i.e., the number
of <p> Bernoulli trials that succeed out of <n> attempts.

Usage: RandomBinomial(<p> <n>)

231

Chapter 9. Detailed Function and Keyword Reference

Example: RandomBinomial(.3, 10) # returns number from 0 to 10

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomNormal(),
RandomUniform(), RandomizeTimer(), SeedRNG()

Name/Symbol: RandomDiscrete()

Description: Returns a random integer between 1 and the argument (inclu-
sive), each with equal probability. If the argument is a �oating-
point value, it will be truncated down; if it is less than 1, it will
return 1, and possibly a warning message.

Usage: RandomDiscrete(<num>)

Example: # Returns a random integer between 1 and 30:

RandomDiscrete(30)

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomNormal(),
RandomUniform(), RandomizeTimer(), SeedRNG()

Name/Symbol: RandomExponential()

Description: Returns a random number according to exponential distribution
with mean <mean> (or decay 1/mean).

Usage: RandomExponential(<mean>)

Example: RandomExponential(100)

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomLogistic(), RandomLogNormal(),
RandomNormal(), RandomUniform(), RandomizeTimer,
SeedRNG()

Name/Symbol: RandomizeTimer()

Description: Seeds the RNG with the current time.

Usage: RandomizeTimer()

Example: RandomizeTimer()

x <- Random()

232

Chapter 9. Detailed Function and Keyword Reference

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomNormal(),
RandomUniform(), SeedRNG()

Name/Symbol: RandomLogistic()

Description: Returns a random number according to the logistic distribution
with parameter <p>: f(x) = exp(x)/(1+exp(x))

Usage: RandomLogistic(<p>)

Example: RandomLogistic(.3)

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogNormal(), RandomNormal(), RandomUniform(),
RandomizeTimer, SeedRNG()

Name/Symbol: RandomLogNormal()

Description: Returns a random number according to the log-normal distri-
bution with parameters <median> and <spread>. Generated
by calculating median*exp(spread*RandomNormal(0, 1)).
<spread> is a shape parameter, and only a�ects the variance as
a function of the median; similar to the coe�cient of variation.
A value near 0 is a sharp distribution (.1-.3), larger values are
more spread out; values greater than 2 make little di�erence in
the shape.

Usage: RandomLogNormal(<median>, <spread>)

Example: RandomLogNormal(5000, .1)

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomNormal(), RandomUniform(),
RandomizeTimer, SeedRNG()

Name/Symbol: RandomNormal()

Description: Returns a random number according to the standard normal
distribution with <mean> and <stdev>.

Usage: RandomNormal(<mean>, <stdev>)

233

Chapter 9. Detailed Function and Keyword Reference

Example:

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomUniform(),
RandomizeTimer, SeedRNG()

Name/Symbol: RandomUniform()

Description: Returns a random �oating-point number between 0 and <num>.

Usage: RandomUniform(<num>)

Example:

See Also: Random(), RandomBernoulli(), RandomBinomial,
RandomDiscrete(), RandomExponential(),
RandomLogistic(), RandomLogNormal(), RandomNormal(),
RandomizeTimer(), SeedRNG()

Name/Symbol: Rank()

Description: Returns a list of numbers describing the rank of each position,
from min to max. The same as calling Order(Order(x)).

Usage: Rank(<list-of-numbers>)

Example: n <- [33,12,1,5,9]

o <- Rank(n)

Print(o) #should print [5,4,1,2,3]

See Also: Order()

Name/Symbol: ReadCSV()

Description: Reads a comma-separated value �le into a nested list. Need not
be named with a .csv extension. It should properly strip quotes
from cells, and not break entries on commas embedded within
quoted text.

Usage: ReadCSV(<filename>)

Example: table <- ReadCSV("datafile.csv")

See Also: FileReadTable(), FileReadList, StripQuotes

234

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: Rectangle()

Description: Creates a rectangle for graphing at x,y with size dx and dy.
Rectangles are only currently de�nable oriented in horizon-
tal/vertical directions. A rectangle must be added to a par-
ent widget before it can be drawn; it may be added to widgets
other than a base window. The properties of rectangles may
be changed by accessing their properties directly, including the
FILLED property which makes the object an outline versus a
�lled shape.

Usage: Rectangle(<x>, <y>, <dx>, <dy>, <color>)

Example:
r <- Rectangle(30,30,20,10, MakeColor(green))

AddObject(r, win)

Draw()

See Also: Circle(), Ellipse(), Square(), Line()

Name/Symbol: ReflectPoints

Description: Takes a set of points (de�ned in a joined list
[[x1,x2,x3,...],[y1,y2,y3,...]] and re�ects them around the
vertical axis x=0, returning a similar [[x],[y]] list. Identical to
ZoomPoints(pts,-1,1)

Usage: ReflectPoints(<points>)

Example: points <- [[1,2,3,4],[20,21,22,23]]

newpoints <- ReflectPoints(points)

See Also: ZoomPoints(), RotatePoints

Name/Symbol: RegisterEvent()

Description: Adds an event to the event loop. This function is currently
experimental, and its usage may change in future versions of
PEBL.

Usage: USAGE CURRENTLY UNDOCUMENTED

Example:

235

Chapter 9. Detailed Function and Keyword Reference

See Also: ClearEventLoop(), StartEventLoop()

Name/Symbol: RemoveObject()

Description: Removes a child widget from a parent. Useful if you are adding
a local widget to a global window inside a loop. If you do not
remove the object and only Hide() it, drawing will be slug-
gish. Objects that are local to a function are removed automat-
ically when the function terminates, so you do not need to call
RemoveObject() on them at the end of a function.

Usage: RemoveObject(<object>, <parent>)

Example:

See Also:

Name/Symbol: RemoveSubset()

Description: Removes a subset of elements from a list. Creates a new list,
and does not a�ect the original

Usage: RemoveSubset(<list1>,<list-of-element-indices>])

Example: list1 <- [1,2,2,4,5]

list2 <- RemoveSubset(list1,[2,3])

Print(list1) #[1,2,2,4,5]

Print(list2) #[1,4,5]

See Also: Merge(), Insert(), Rest()

Name/Symbol: Repeat()

Description: Makes and returns a list by repeating <object> <n> times. Has
no e�ect on the object. Repeat will not make new copies of the
object. If you later change the object, you will change every
object in the list.

Usage: Repeat(<object>, <n>)

Example: x <- "potato"

y <- repeat(x, 10)

Print(y)

produces ["potato","potato","potato",

"potato","potato", "potato",

"potato","potato","potato","potato"]

236

Chapter 9. Detailed Function and Keyword Reference

See Also: RepeatList()

Name/Symbol: RepeatList()

Description: Makes a longer list by repeating a shorter list <n> times. Has
no e�ect on the list itself, but changes made to objects in the
new list will also a�ect the old list.

Usage: RepeatList(<list>, <n>)

Example: RepeatList([1,2],3) # == [1,2,1,2,1,2]

See Also: Repeat(), Merge(), []

Name/Symbol: Replace()

Description: Creates a copy of a (possibly nested) list in which items match-
ing some list are replaced for other items. <template> can be
any data structure, and can be nested. <replacementList>

is a list containing two-item list pairs: the to-be-replaced item
and to what it should be transformed.
Note: replacement searches the entire <replacementList> for
matches. If multiple keys are identical, the item will be replaced
with the last item that matches.

Usage: Replace(<template>,<replacementList>)

Example:
x <- ["a","b","c","x"]

rep <- [["a","A"],["b","B"],["x","D"]]

Print(Replace(x,rep))

Result: [A, B, c, D]

See Also: ReplaceChar()

Name/Symbol: ReplaceChar()

Description: Substitutes <char2> for <char> in <string>. Useful for saving
subject entry data in a �le; replacing spaces with some other
character. The second argument can either be a character to
match, or a list of characters to match, in which case they all
get replaced with the third argument.

Usage: ReplaceChar(<string>,<char>,<char2>)

ReplaceChar(<string>,[<chara>, <charb>],<char2>)

237

Chapter 9. Detailed Function and Keyword Reference

Example:
x <- ["Sing a song of sixpence"]

rep <- ReplaceChar(x," ", "_")

Print(rep)

Result: Sing_a_song_of_sixpence

x <- ["sing a song of sixpence"]

rep <- ReplaceChar(x,["s","x"], "p")

Print(rep)

Result: ping a pong of pippence

See Also: for list items: Replace() , \SplitString(),

Name/Symbol: ResetCanvas()

Description: Resets a canvas, so that anything drawn onto it is erased and
returned to its background color. Implemented by resetting the
background color to itself:

canvas.color <- canvas.

The function does not return the canvas, but has the side e�ect
of resetting it.

Usage: ResetCanvas(<list>)

Example:
#create a canvas, add pixel noise, then reset and repeat.

define Start(p)

{

gWin <- MakeWindow()

canvas <- MakeCanvas(100,100,MakeColor("black"))

AddObject(canvas,gWin); Move(canvas,300,300)

Draw()

white <- MakeColor("white")

##add pixel noise

j <- 1

while(j < 5)

{

i <- 1

while(i < 200)

{

SetPixel(canvas,Round(Random()*100),

Round(Random()*100),white)

i <- i +1

}

238

Chapter 9. Detailed Function and Keyword Reference

Draw()

WaitForAnyKeyPress()

ResetCanvas(canvas)

Draw()

j <- j + 1

}

WaitForAnyKeyPress()

}

See Also: +SetPixel()+, +MakeCanvas()+, +Draw()+

Name/Symbol: Rest()

Description: Returns the 'rest' of a list; a list minus its �rst element. If the
list is empty or has a single member, it will return an empty
list []. This is a very common function in LISP.

Usage: Rest(<list>)

Example: x <- Sequence(1,5,1)

y <- Rest(x)

Print(rep)

Result: [2,3,4,5]

See Also: Insert()

Name/Symbol: RGBtoHSV()

Description: Converts a color object to HSV values. May be useful for com-
puting color-space distances an so on. No HSVtoRGB is cur-
rently implemented.

Usage: RGBtoHSV(<color>)

Example:
x <- RGBtoHSV(MakeColor("red))

See Also: MakeColor(), MakeColorRGB

Name/Symbol: return

Description: Enables a function to return a value.

239

Chapter 9. Detailed Function and Keyword Reference

Usage: define funcname()

{

return 0

}

Example:

See Also:

Name/Symbol: Rotate()

Description: Returns a list created by rotating a list by <n> items. The new
list will begin with the <n+1>th item of the old list (modulo its
length), and contain all of its items in order, jumping back to the
beginning and ending with the <n>th item. Rotate(<list>,0)
has no e�ect. Rotate does not modify the original list.

Usage: Rotate(<list-of-items>, <n>)

Example: Rotate([1,11,111],1) # == [11,111,1]

See Also: Transpose()

Name/Symbol: RotatePoints

Description: Takes a set of points (de�ned in a joined list [[x1,x2,x3,...],
[y1,y2,y3,...]] and rotates them <angle> degrees around
the point [0,0], returning a similar [[x],[y]] list.

Usage: ZoomPoints(<points>,<angle>)

Example: points <- [[1,2,3,4],[20,21,22,23]]

newpoints <- RotatePoints(points,10)

See Also: ZoomPoints(), ReflectPoints

Name/Symbol: Round()

Description: Rounds <num> to nearest integer, or if optional <precision>
argument is included, to nearest 10−precision.

Usage: Round(<num>)

Round(<num>,<precision>)

240

Chapter 9. Detailed Function and Keyword Reference

Example: Round(33.23) # == 33

Round(56.65) # == 57

Round(33.12234,2) # == 33.12

Round(43134.23,-2) # == 43100

See Also: Ceiling(), Floor(), AbsFloor(), ToInt()

241

Chapter 9. Detailed Function and Keyword Reference

9.19 S

Name/Symbol: Sample()

Description: Samples a single item from a list, returning it. It is a bit more
convenient at times than Shu�eN(list,1), which returns a list
of length 1. Implemented as First(Shu�eN(list,1))

Usage: Sample(<list>)

Example: Sample([1,1,1,2,2]) # Returns a single number

Sample([1,2,3,4,5,6,7]) # Returns a single number

See Also: SeedRNG(), Sample() ChooseN(),
SampleNWithReplacement(), Subset()

Name/Symbol: SampleN()

Description: Samples <number> items from list, returning a randomly- or-
dered list. Items are sampled without replacement, so once an
item is chosen it will not be chosen again. If <number> is larger
than the length of the list, the entire list is returned shu�ed.
It di�ers from ChooseN in that ChooseN returns items in the
order they appeared in the originial list. It is implemented as
Shuffle(ChooseN()).

Usage: SampleN(<list>, <n>)

Example: SampleN([1,1,1,2,2], 5) # Returns 5 numbers

SampleN([1,2,3,4,5,6,7], 3) # Returns 3 numbers

See Also: ChooseN(), SampleNWithReplacement(), Subset()

Name/Symbol: SampleNWithReplacement()

Description: SampleNWithReplacement samples <number> items from
<list>, replacing after each draw so that items can be sam-
pled again. <number> can be larger than the length of the list.
It has no side e�ects on its arguments.

Usage: SampleNWithReplacement(<list>, <number>)

242

Chapter 9. Detailed Function and Keyword Reference

Example: x <- Sequence(1:100,1)

SampleNWithReplacement(x, 10)

Produces 10 numbers between 1 and 100, possibly

repeating some.

See Also: SampleN(), ChooseN(), Subset()

Name/Symbol: SetProperty

Description: Sets a a property of a custom object. This works for custom
or built-in objects, but new properties can only be set on cus-
tom object. This function works essentially identically to the
obj.property assignment, but it allows you to create property
names from input. It is used extensively for the PEBL param-
eter setting.

Usage: SetProperty(obj,property, value)

Example: obj <- MakeCustomObject("myobject")

obj.taste <- "buttery"

obj.texture <- "creamy"

SetProperty(obj,"flavor","tasty")

list <- GetPropertyList(obj)

loop(i,list)

{

if(PropertyExists(obj,i)

{

Print(i + ": " + GetProperty(obj,i))

}

}

See Also: GetProperty, PropertyExists, GetPropertyList

MakeCustomObject, PrintProperties

Name/Symbol: SaveAudioToWaveFile

Description: Saves a bu�er, recorded using the GetAudioInputBu�er, to a
.wav �le for later analysis or archive.

Usage: SaveAudioToWaveFile(filename, buffer)

This will save a .wav �le of a bu�er that was recorded (e.g.,
using GetVocalResponseTime).

See number-stroop.pbl in the stroop directory of the test battery
and testaudioin.pbl in demo/ for examples.

243

Chapter 9. Detailed Function and Keyword Reference

Example:
gResponseBuffer <- MakeAudioInputBuffer(5000)

resp0 <- GetVocalResponseTime(gResponseBuffer,.35, 200)

SaveAudioToWaveFile("output.wav",gResponseBuffer)

See Also: GetVocalResponseTime(), MakeAudioInputBuffer()

Name/Symbol: SDTBeta()

Description: SDTBeta computes beta, as de�ned by signal detection theory.
This is a measure of decision bias based on hit rate and false
alarm rate.

Usage: SDTDBeta(<hr>, <far>,<trunc>:.001)

Here, hr and far should be bounded between 0 and 1.0. To
avoid errors when 0 or 1.0, hr and far values are truncated to
minimum of the optional argument trunc and 1.0-trunc, which
defaults to .001. This will happen even for values between 0
and .001 or between .999 and 1.0. This is ad hoc, but should be
reasonable because of the massive uncertainty about anything
way out in the tails of the normal distribution.

Example:
Print(SDTBeta(.1,.9))

Print(SDTBeta(.1,.5))

Print(SDTBeta(.5,.5))

Print(SDTBeta(.8,.9))

Print(SDTbeta(.9,.95))

See Also: SDTDPrime()

Name/Symbol: SDTDPrime()

Description: SDTDPrime computes d-prime, as de�ned by signal detection
theory. This is a measure of sensitivy based jointly on hit rate
and false alarm rate.

Usage: SDTDPrime(<hr>, <far>,<trunc>.001)

Here, hr and far should be bounded between 0 and 1.0. To
avoid errors when 0 or 1.0, hr and far values are truncated to
minimum of the optional argument trunc and 1.0-trunc, which
defaults to .001. This will happen even for values between 0

244

Chapter 9. Detailed Function and Keyword Reference

and .001 or between .999 and 1.0. This is ad hoc, but should be
reasonable because of the massive uncertainty about anything
way out in the tails of the normal distribution.

Example:
Print(SDTDPrime(.1,.9)) #2.56431

Print(SDTDPrime(.1,.5)) #1.28155

Print(SDTDPrime(.5,.5)) #0

Print(SDTDPrime(.8,.9)) #.43993

Print(SDTDPrime(.9,.95)) #.363302

See Also: SDTBeta(),

Name/Symbol: SetCheckbox()

Description: This sets the .status property of a checkbox and draws it. Its
state can also be updated using the the ClickCheckBox() func-
tion, which �ips the current state.

Usage: SetCheckBox(obj, value)

Example: ok <- MakeCheckbox("OK?",400,250,gWin,150)

Draw()

SetCheckBox(ok,1)

Draw()

Wait(1000)

SetCheckbox(ok,0)

Draw()

Wait(1000)

Examples of its use can be found in demo
ui.pbl

See Also: MakeCheckBox(), ClickCheckBox()

Name/Symbol: SeedRNG()

Description: Seeds the random number generator with <num> to reproduce a
random sequence. This function can be used cleverly to create
a multi-session experiment: Start by seeding the RNG with a
single number for each subject; generate the stimulus sequence,
then extract the appropriate stimuli for the current block. Re-
member to RandomizeTimer() afterward if necessary.

245

Chapter 9. Detailed Function and Keyword Reference

Usage: SeedRNG(<num>)

Example: ##This makes sure you get the same random order

across sessions for individual subjects.

SeedRNG(gSubNum)

stimTmp <- Sequence(1:100,1)

stim <- Shuffle(stimTmp)

RandomizeTimer()

See Also: RandomizeTimer()

Name/Symbol: SendData()

Description: Sends data on network connection. Example of usage in
demo/nim.pbl. You can only send text data.

Usage: SendData(<network>,<data_as_string>)

Example: On 'server':

net <- WaitForNetworkConnection("localhost",1234)

SendData(net,"Watson, come here. I need you.")

CloseNetworkConnection(net)

On Client:

net <- ConnectToHost("localhost",1234)

value <- GetData(net,20)

Print(value)

CloseNetworkConnection(net)

##should print out "Watson, come here. I need you."

See Also: ConnectToIP, ConnectToHost, WaitForNetworkConnection,
GetData, ConvertIPString, CloseNetworkConnection

Name/Symbol: SegmentsIntersect()

Description: Determines whether two line segments, de�ned by four xy point
pairs, intersect. Two line segments that share a corner return
0, although they could be considered to intersect.

This function is de�ned in pebl-lib/Graphics.pbl

Usage: SegmentsIntersect(x1,y1,x2,y2,

a1,b1,a2,b2)

246

Chapter 9. Detailed Function and Keyword Reference

Example: SegmentsIntersect(1,0,2,0,

1,2,2,2) #0

#returns 0, though they share (1,0)

SegmentsIntersect(1,0,2,0,

1,0,2,2)

SegmentsIntersect(1,1,3,1,

2,2,2,0) #1

See Also: GetAngle3, ToRight

Name/Symbol: Sequence()

Description: Makes a sequence of numbers from <start> to <end> at <step>-
sized increments. If <step> is positive, <end> must be larger
than <start>, and if <step> is negative, <end> must be smaller
than <start>. If <start> + n*<step> does not exactly equal
<end>, the last item in the sequence will be the number closest
number to <end> in the direction of <start> (and thus <step>).

Usage: Sequence(<start>, <end>, <step>)

Example: Sequence(0,10,3) # == [0,3,6,9]

Sequence(0,10,1.5) # == [0,1.5,3,4.5, 6, 7.5, 9]

Sequence(10,1,3) # error

Sequence(10,0,-1) # == [10,9,8,7,6,5,4,3,2,1]

See Also: Repeat(), RepeatList()

Name/Symbol: SetCursorPosition()

Description: Moves the editing cursor to a speci�ed character position in a
textbox.

Usage: SetCursorPosition(<textbox>, <integer>)

Example: SetCursorPosition(tb, 23)

See Also: SetEditable(), GetCursorPosition(), SetText(),
GetText()

Name/Symbol: SetEditable()

247

Chapter 9. Detailed Function and Keyword Reference

Description: Sets the �editable� status of the textbox. All this really does
is turns on or o� the cursor; editing must be done with the
(currently unsupported) device function GetInput().

Usage: SetEditable()

Example:
SetEditable(tb, 0)

SetEditable(tb, 1)

See Also: GetEditable()

Name/Symbol: SetElement()

Description: E�ciently alter a speci�c item from a list. SetElement has
length-constant access time, and so it can be e�cient to pre-
create a list structure and then populate it one-by-one.

Usage: SetElement(<list>, <index>, <value>)

Example:
##Set a random subset of elements to their index:

list <- Repeat(0,10)

index <- 1

while(index <= 10)

{

if(Random()<.2)

{

SetElement(list,index,index)

}

index <- index + 1

}

See Also: Nth(), Append(), PushOnEnd()

Name/Symbol: SetFont()

Description: Resets the font of a textbox or label. Change will not appear
until the next Draw() function is called. Can be used, for exam-
ple, to change the color of a label to give richer feedback about
correctness on a trial (see example below). Font can alse be set
by assigning to the object.font property of an object.

Usage: SetFont(<text-widget>,)

248

Chapter 9. Detailed Function and Keyword Reference

Example: fontGreen <- MakeFont("vera.ttf",1,22,

MakeColor("green"),

MakeColor("black"), 1)

fontRed <- MakeFont("vera.ttf",1,22,

MakeColor("red"),

MakeColor("black"), 1)

label <- MakeLabel(fontGreen, "Correct")

#Do trial here.

if(response == 1)

{

SetText(label, "CORRECT")

SetFont(label, fontGreen)

} else {

SetText(label, "INCORRECT")

SetFont(label, "fontRed)

}

Draw()

See Also: SetText()

Name/Symbol: SetMouseCursorPosition()

Description: Sets the current x,y coordinates of the mouse pointer, 'warping'
the mouse to that location immediately

Usage: SetMouseCursorPosition(<x>,<y>)

Example:
##Set mouse to center of screen:

SetMouseCursorPosition(gVideoWidth/2,

gVideoHeight/2)

See Also: ShowCursor, WaitForMouseButton,
SetMouseCursorPosition, GetMouseCursorPosition

Name/Symbol: SetPixel(), SetPoint()

Description: Sets the pixel at x,y to a particular color. It can also be called
using SetPoint(). SetPoint is primarily useful for images and
canvases�labels and textboxes get re-rendered upon draw so
any use of SetPixel will get overwritten when it gets drawn. It
won't work on windows or shapes.

249

Chapter 9. Detailed Function and Keyword Reference

Usage: SetPixel(<x>,<y>,<color>)

SetPoint(<x>,<y>,<color>)

Example:
back <- MakeCanvas(50,50)

AddObject(back,gWin)

col <- MakeColor("green")

xy <- [[10,10],[10,11],[10,12],[10,13]]

loop(i,xy)

{

SetPixel(First(i),Second(i),col)

}

Draw()

See Also: SetPoint, MakeGabor

Name/Symbol: SetPPortMode

Description: Sets a parallel port mode, either "<input>" or "<output>".

Usage: SetPPortMode("<input>")

Example:

See Also: COMPortGetByte, COMPortSendByte, OpenPPort OpenCOMPort,
SetPPortMode, GetPPortState

Name/Symbol: SetPPortState

Description: Sets a parallel port state, using a list of 8 'bits' (1s or 0s).

Usage: SetPPortState([0,0,0,0,0,0,0,0])

Example:

See Also: COMPortGetByte, COMPortSendByte, OpenPPort OpenCOMPort,
SetPPortMode, GetPPortState

Name/Symbol: SetScrollingText()

Description: This updates the text in a ScrollingTextBox. Because text
must be parsed to be put into the box, you cannot just update
the .text property, but instead should use this function.

250

Chapter 9. Detailed Function and Keyword Reference

Usage: SetScrollingText(stb, newtext)

Here, stb is a scrolling textbox created with
MakeScrollingTextBox, and newtext is the new text
you want to display.

Example: See ui.pbl in the demo directory for examples of the use of a
scrolling text box. A brief example follows:

textscroll <- MakeScrollingTextBox("",200,50,gWin,12,

300,150,0)

SetScrollingText(textscroll,FileReadText("Uppercase.txt"))

Draw()

resp <- WaitForClickOntarget([textscroll],[1])

CallFunction(textscroll.clickon,[textscroll,gClick])

See Also: MakeScrollingTextBox MakeScrollBox UpdateScrollBox

DrawScrollBox ClickOnScrollBox

Name/Symbol: SetText()

Description: Resets the text of a textbox or label. Change will not appear
until the next Draw() function is called. The object.text prop-
erty can also be used to change text of an object, by doing:
object.text <- "new text"

Usage: SetText(<text-widget>, <text>)

Example: # Fixation Cross:

label <- MakeLabel(font, "+")

Draw()

SetText(label, "X")

Wait(100)

Draw()

See Also: GetText(), SetFont()

Name/Symbol: Show()

Description: Sets a widget to visible, once it has been added to a parent
widget. This just changes the visibility property, it does not
make the widget appear. The widget will not be displayed until
the Draw() function is called. The .visible property of objects
can also be used to hide or show the object.

251

Chapter 9. Detailed Function and Keyword Reference

Usage: Show(<object>)

Example: window <- MakeWindow()

image1 <- MakeImage("pebl.bmp")

image2 <- MakeImage("pebl.bmp")

AddObject(image1, window)

AddObject(image2, window)

Hide(image2)

Draw()

Wait(300)

Show(image2)

Draw()

See Also: Hide()

Name/Symbol: ShowCursor()

Description: Hides or shows the mouse cursor. Currently, the mouse is not
used, but on some systems in some con�gurations, the mouse
cursor shows up. Calling ShowCursor(0) will turn o� the cur-
sor, and ShowCursor(1) will turn it back on. Be sure to turn
it on at the end of the experiment, or you may actually lose the
cursor for good.

Usage: ShowCursor(<value>)

Example: window <- MakeWindow()

ShowCursor(0)

Do experiment here

##

Turn mouse back on.

ShowCursor(1)

See Also:

Name/Symbol: Shuffle()

Description: Randomly shu�es a list.

Usage: Shuffle(list)

Example: Print(Shuffle([1,2,3,4,5]))

Results might be anything, like [5,3,2,1,4]

See Also: Sort(), SortBy(), ShuffleRepeat(),
ShuffleWithoutAdjacents()

252

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: ShuffleRepeat()

Description: Randomly shu�es <list>, repeating <n> times. Shu�es each
iteration of the list separately, so you are guaranteed to go
through all elements of the list before you get another. Returns
a nested list.

Usage: ShuffleRepeat(<list>, <n>)

Example: Print(ShuffleRepeat([1,2,3,4,5]),3)

Results might be anything, like:

[[5,3,2,1,4], [3,2,5,1,4], [1,4,5,3,2]]

Typically, you will want to �atten before using:

list <- Flatten(ShuffleRepeat([1,2,3], 5))

See Also: Sort(), SortBy(), ShuffleRepeat(),
ShuffleWithoutAdjacents()

Name/Symbol: ShuffleWithoutAdjacents()

Description: Randomly shu�es <nested-list>, attempting to create a list
where the nested elements do not appear adjacently in the new
list. Returns a list that is �attened one level. It will always
return a shu�ed list, but it is not guaranteed to return one
that has the non-adjecent structure speci�ed, because this is
sometimes impossible or very di�cult to do randomly. Given
small enough non-adjacent constraints with enough �llers, it
should be able to �nd something satisfactory.

Usage: ShuffleWithoutAdjacents(<nested-list>)

Example: Print(ShuffleWithoutAdjacents([[1,2,3],

[4,5,6],

[7,8,9]])

Example Output:

[8, 5, 2, 7, 4, 1, 6, 9, 3]

[7, 4, 8, 1, 9, 2, 5, 3, 6]

Non-nested items are shuffled without constraint

Print(ShuffleWithoutAdjacents([[1,2,3],

11,12,13,14,15,16]))

output: [13, 11, 2, 14, 3, 15, 1, 16, 12]

[13, 12, 2, 16, 15, 11, 1, 14, 3]

253

Chapter 9. Detailed Function and Keyword Reference

[11, 1, 15, 2, 12, 16, 14, 13, 3]

Sometimes the constraints cannot be satisfied.

9 will always appear in position 2

Print(ShuffleWithoutAdjacents([[1,2,3], 9])

output: [3, 9, 1, 2]

[2, 9, 3, 1]

[3, 9, 2, 1]

See Also: Shuffle(), Sort(), SortBy(), ShuffleRepeat(),
ShuffleWithoutAdjacents()

Name/Symbol: Sign()

Description: Returns +1 or -1, depending on sign of argument.

Usage: Sign(<num>)

Example: Sign(-332.1) # == -1

Sign(65) # == 1

See Also: Abs()

Name/Symbol: SignalFatalError()

Description: Stops PEBL and prints <message> to stderr. In addition, when
possible, it will pop-up a window with the error message. Useful
for type-checking in user-de�ned functions. If you want to end
an experiment directly, use ExitQuietly instead.

Usage: SignalFatalError(<message>)

Example:
If(not IsList(x))

{

SignalFatalError("Tried to frobnicate a List.")

}

##Prints out error message and

##line/filename of function

See Also: Print(), ExitQuietly()

Name/Symbol: Sin()

254

Chapter 9. Detailed Function and Keyword Reference

Description: Sine of <deg> degrees.

Usage: Sin(<deg>)

Example: Sin(180)

Sin(0)

See Also: Cos(), Tan(), ATan(), ACos(), ATan()

Name/Symbol: Sort()

Description: Sorts a list by its values from smallest to largest.

Usage: Sort(<list>)

Example: Sort([3,4,2,1,5]) # == [1,2,3,4,5]

See Also: SortBy(), Shuffle()

Name/Symbol: SortBy()

Description: Sorts a list by the values in another list, in ascending order.

Usage: SortBy(<value-list>, <key-list>)

Example: SortBy(["Bobby","Greg","Peter"], [3,1,2])

== ["Greg","Peter","Bobby"]

See Also: Shuffle(), Sort()

Name/Symbol: SplitString()

Description: Splits a string into tokens. <split> must be a string. If
<split> is not found in <string>, a list containing the en-
tire string is returned; if split is equal to "", the each letter in
the string is placed into a di�erent item in the list. Only the
�rst character of <split> is used. IF you need a multicharac-
ter split, you can use <SplitStringSlow>, which can handle
multi-character splits but is relatively slower. This should not
matter for short strings, but if you are using splitstring on long
�les, it could make a di�erence.

Usage: SplitString(<string>, <split>)

Example: SplitString("Everybody Loves a Clown", " ")

Produces ["Everybody", "Loves", "a", "Clown"]

255

Chapter 9. Detailed Function and Keyword Reference

See Also: FindInString(), ReplaceChar, SplitStringSlow

Name/Symbol: SplitStringSlow()

Description: Splits a string into tokens. <split> must be a string. If
<split> is not found in <string>, a list containing the en-
tire string is returned; if split is equal to "", the each letter in
the string is placed into a di�erent item in the list. The entire
text of <split> is used to tokenize, but as a consequence this
function is relatively slow, and should be avoided if your string
is longer than a few hundred characters.

Usage: SplitStringSlow(<string>, <split>)

Example: SplitStringSlow("Everybody Loves a Clown", " ")

Produces ["Everybody", "Loves", "a", "Clown"]

SplitStringSlow("she sells seashells", "ll")

#produces ["she se","s seashe", "s"]

See Also: Splitstring FindInString(), ReplaceChar

Name/Symbol: Square()

Description: Creates a square for graphing at x,y with size <size>. Squares
are only currently de�nable oriented in horizontal/vertical di-
rections. A square must be added to a parent widget before it
can be drawn; it may be added to widgets other than a base
window. The properties of squares may be changed by accessing
their properties directly, including the FILLED property which
makes the object an outline versus a �lled shape.

Usage: Ellipse(<x>, <y>, <size>, <color>)

Example:
s <- Square(30,30,20, MakeColor(green))

AddObject(s, win)

Draw()

See Also: Circle(), Ellipse(), Rectangle(), Line()

Name/Symbol: Sqrt()

256

Chapter 9. Detailed Function and Keyword Reference

Description: Square root of <num>.

Usage: Sqrt(<num>)

Example: Sqrt(100) # == 10

See Also:

Name/Symbol: StartEventLoop()

Description: Starts the event loop with currently-registered events. This
function is currently experimental, and its usage may change in
future versions of PEBL.

Usage: StartEventLoop()

Example:

See Also: RegisterEvent(), ClearEventLoop()

Name/Symbol: StartPlayback()

Description: Initiates playback of a movie so that it will play in the back-
ground when a Wait() or WaitFor() function is called. This
allows one to collect a response while playing a movie. The
movie will not actually play until the event loop is started, typ-
ically with something like Wait().

Usage: StartPlayBack(movie)

Example: movie <- LoadMovie("movie.avi",gWin,640,480)

PrintProperties(movie)

Move(movie,20,20)

Draw()

StartPlayback(movie)

Wait(500) #Play 500 ms of the movie.

PausePlayback(movie)

See Also: LoadAudioFile(), LoadMovie(), PlayMovie(),
PausePlayback()

Name/Symbol: StDev()

Description: Returns the standard deviation of <list>.

Usage: StDev(<list>)

257

Chapter 9. Detailed Function and Keyword Reference

Example: sd <- StDev([3,5,99,12,1.3,15])

See Also: Min(), Max(), Mean(), Median(), Quantile(), Sum()

Name/Symbol: Stop()

Description: Stops a sound playing in the background from playing. Calling
Stop() on a sound object that is not playing should have no
e�ect, but if an object is aliased, Stop() will stop the �le. Note
that sounds play in a separate thread, so interrupting the thread
has a granularity up to the duration of the thread-switching
quantum on your computer; this may be tens of milliseconds.

Usage: Stop(<sound-object>)

Example: buzz <- LoadSound("buzz.wav")

PlayBackground(buzz)

Wait(50)

Stop(buzz)

See Also: PlayForeground(), PlayBackGround()

Name/Symbol: StringLength()

Description: Determines the length of a string, in characters.

Usage: StringLength(<string>)

Example: StringLength("absolute") # == 8

StringLength(" spaces ") # == 12

StringLength("") # == 0

See Also: Length(), SubString()

Name/Symbol: StripQuotes()

Description: Strips quotation marks from the outside of a string. Useful if
you are reading in data that is quoted.

Usage: StripQuotes(<text>)

Example: text <- gQuote + "abcd" + gQuote

Print(StripQuotes(text)) ## abcd

Print(StripQuotes("aaa")) ##aaa

See Also: StripSpace()

258

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: StripSpace()

Description: Strips spaces from the start and end of a string. Useful for
cleaning up input and such.

Usage: StripSpaces(<text>)

Example: text <- " abcd "

Print(StripSpace(text)) ## 'abcd'

Print(StripSpace("aaa")) ## 'aaa'

See Also: StripQuotes()

Name/Symbol: SubList()

Description: Extracts a list from another list, by specifying beginning and
end points of new sublist.

Usage: SubList(<list>, <begin>, <end>)

Example: SubList([1,2,3,4,5,6],3,5) # == [3,4,5]

See Also: SubSet(), ExtractListItems()

Name/Symbol: Subset()

Description: Extracts a subset of items from another list, returning a new
list that includes items from the original list only once and in
their original orders. Item indices in the second argument that
do not exist in the �rst argument are ignored. It has no side
e�ects on its arguments.

Usage: Subset(<list>, <list-of-indices>)

Example: Subset([1,2,3,4,5,6],[5,3,1,1]) # == [1,3,5]

Subset([1,2,3,4,5], [23,4,2]) # == [2,4]

See Also: SubList(), ExtractItems(), SampleN()

Name/Symbol: SubString()

Description: Extracts a substring from a longer string.

259

Chapter 9. Detailed Function and Keyword Reference

Usage: SubString(<string>,<position>,<length>)

If position is larger than the length of the string, an empty
string is returned. If position + length exceeds the length of
the string, a string from <position> to the last character of
the string is returned.

Example: SubString("abcdefghijklmnop",3,5) # == "cdefg"

See Also:

Name/Symbol: Sum()

Description: Returns the sum of <list>.

Usage: Sum(<list>)

Example: sum <- StDev([3,5,99,12,1.3,15]) # == 135.3

See Also: Min(), Max(), Mean(), Median(), Quantile(), StDev()

Name/Symbol: SummaryStats()

Description: Computes summary statistics for a data list, aggregated by la-
bels in a condition list. For each condition (distinct label in
the <cond> list), it will return a list with the following entries:
<cond> <N> <median> <mean> <sd>

Usage: SummaryStats(<data>,<cond>)

Example: dat <- [1.1,1.2,1.3,2.1,2.2,2.3]

cond <- [1,1,1,2,2,2]

Print(SummaryStats(dat,cond))

Result:

[[1, 3, 1.1, 1.2, 0.0816497]

, [2, 3, 2.1, 2.2, 0.0816497]

]

See Also: StDev(), Min(), Max(), Mean(), Median(), Quantile(), Sum()

Name/Symbol: SystemCall()

260

Chapter 9. Detailed Function and Keyword Reference

Description: Calls/runs another operating system command. Can also be
used to launch another PEBL program. Useful to check Get-
SystemType() before running.

Note that the output of a command-line argument is generally
not passed back into PEBL; just the function's return code,
which is usually 0 on success or some other number on failure
(depending upon the type of failure). Some uses might include:

Usage: SystemCall("text-of-command")

SystemCall("text-of-command","command-line-options")

Example: if(GetSystemType() == "WINDOWS")

{

x <- SystemCall("dir input.txt")

} else {

x <- SystemCall("ls input.txt")

}

if(x <> 0)

{

SignalFatalError("Expected file ["+

"input.txt] does not exist")

}

See Also: GetSystemType()

261

Chapter 9. Detailed Function and Keyword Reference

9.20 T

Name/Symbol: Tab()

Description: Produces a tab character which can be added to a string. If
displayed in a text box, it will use a 4-item tab stop.

Usage: Tab(3)

Example: Print("Number: " Tab(1) + number)

Print("Value: " Tab(1) + value)

Print("Size: " Tab(1) + size)

See Also: Format(), CR()

Name/Symbol: Tan()

Description: Tangent of <deg> degrees.

Usage: Tan(<deg>)

Example: Tan(180)

See Also: Cos(), Sin(), ATan(), ACos(), ATan()

Name/Symbol: ThickLine()

Description: Makes a thick line between two coordinates. This uses the
SDL_gfx thickline primitive.

Usage: ThickLine(<x1>,<y1>,<x2>,<y2>,

<size-in-pixels>,<color>)

Example:

a <- ThickLine(10,10,300,400,20,

MakeColor("red"))

AddObject(a,gWin)

Draw()

See Also: Line(), Polygon()

Name/Symbol: TimeStamp()

262

Chapter 9. Detailed Function and Keyword Reference

Description: Returns a string containing the date-and-time, formatted ac-
cording to local conventions. Should be used for documenting
the time-of-day and date an experiment was run, but not for
keeping track of timing accuracy. For that, use GetTime().

Usage: TimeStamp()

Example: a <- TimeStamp()

Print(a)

See Also: GetTime()

Name/Symbol: ToInteger()

Description: Rounds a number to an integer, changing internal representa-
tion.

Usage: ToInteger(<number>)

ToInteger(<floating-point>)

ToInteger(<string-as-number>)

Example: ToInteger(33.332) # == 33

ToInteger("3213") # == 3213

See Also: Round(), Ceiling(), AbsCeiling(), Floor(), AbsFloor()

Name/Symbol: ToFloat()

Description: Converts number to internal �oating-point representation.

Usage: ToFloat(<number>)

Example:

See Also:

Name/Symbol: ToNumber()

Description: Converts a variant to a number. Most useful for character
strings that are interpretable as a number, but may also work
for other subtypes.

Usage: ToNumber(<string)

ToNumber(<number>)

263

Chapter 9. Detailed Function and Keyword Reference

Example: a <- ToNumber("3232")

Print(a + 1) # produces the output 3233.

See Also: ToString(), ToFloat(), Round()

Name/Symbol: ToRight()

Description: Determines whether a point p3 is 'to the right' of a line seg-
ment de�ned by p1 to p2. Works essentially by computing the
determinant.

Usage: ToRight(<p1>,<p2>,<p3>)

Example: a <- [100,0]

b <- [100,100]

c <- [150,50]

ToRight(a,b,c) # returns 1; true

ToRight(b,a,c) # returns 0; false

See Also: GetAngle() GetAngle3, SegmentsIntersect

Name/Symbol: ToString()

Description: Converts value to a string representation. Most useful for nu-
merical values. This conversion is done automatically when
strings are combined with numbers.

Usage: ToString(<number>)

ToString(<string>)

Example: a <- ToString(333.232)

Print(a + "111")

produces the output '333.232111'.

See Also: ToString(), +.

Name/Symbol: TranslateKeyCode()

Description: Translates a code corresponding to a keyboard key into a key-
board value. This code is returned by some event/device polling
functions.

Usage:

264

Chapter 9. Detailed Function and Keyword Reference

Example:

See Also:

Name/Symbol: Transpose()

Description: Transposes or �rotates� a list of lists. Each sublist must be of
the same length.

Usage: Transpose(<list-of-lists>)

Example: Transpose([[1,11,111],[2,22,222],

[3,33,333], [4,44,444]])

== [[1,2,3,4],[11,22,33,44],

[111,222,333,444]]

See Also: Rotate()

265

Chapter 9. Detailed Function and Keyword Reference

9.21 U

Name/Symbol: UpdatePulldown()

Description: This changes the list being used in a Pulldown object. It tries
to maintain the same selected option (matching the text of the
previous selection), but if not found will select index 1. It calls
DrawPullDown when complete, but a Draw() command must be
issued before the pulldown changes will appear.

Usage: UpdatePullDown(object, newlist)

Example: options <- MakePulldownButton(["A",B","C"],400,250,gWin,14,100,3)

Draw()

WaitForAnyKeyPress()

##This should add a fourth option but C should still be selected.

UpdatePullDown(options,["A","B","C","D"])

Draw()

WaitForAnyKeyPress()

See Also: MakePullDown(), Pulldown(), DrawPulldown

Name/Symbol: UpdateScrollbox()

Description: This updates the layout of a ScrollBox. It should be used if
you manually change the .list or .listo�set properties. It won't
actually redraw the scrollbox (which is done by DrawScrollbox).

Usage: UpdateScrollBox(sb)

Here, sb is the scrollbox object.

Example: See ui.pbl in the demo directory for examples of the use of a
scrolling text box. A brief example follows:

266

Chapter 9. Detailed Function and Keyword Reference

sb <- MakeScrollBox(Sequence(1,50,1),"The numbers",40,40,gWin,12,150,500,3)

Draw()

resp <- WaitForClickOntarget([sb],[1])

CallFunction(sb.clickon,[sb,gClick])

#Alternately: ClickOnScrollbox(sb,gClick)

##change the selected items

sb.list <- Sequence(sb.selected,sb.selected+50,1)

UpdateScrollbox(sb)

DrawScrollbox(sb)

Draw()

See Also: MakeScrollingTextBox MakeScrollBox DrawScrollBox

ClickOnScrollBox

Name/Symbol: Uppercase()

Description: Changes a string to uppercase. Useful for testing user input
against a stored value, to ensure case di�erences are not de-
tected.

Usage: Uppercase(<string>)

Example: Uppercase("POtaTo") # == "POTATO"

See Also: Lowercase()

267

Chapter 9. Detailed Function and Keyword Reference

9.22 V

Name/Symbol: VariableExists()

Description: Tests whether a variable exists.

Usage: Uppercase("variablename")

This is a low-level function that tests whether a variable ex-
ists. It is used for error-checking in some functions within the
launcher.

Example: if(not VariableExists("underwear"))

{

underwear <- "Under there"

}

See Also: PropertyExists()

268

Chapter 9. Detailed Function and Keyword Reference

9.23 W

Name/Symbol: Wait()

Description: Waits the speci�ed number of milliseconds, then returns.

Usage: Wait(<time>)

Example: Wait(100)

Wait(15)

See Also:

Name/Symbol: WaitForAllKeysUp()

Description: Wait until all keyboard keys are in the up position. This in-
cludes numlock, capslock, etc.

Usage:

Example:

See Also:

Name/Symbol: WaitForAnyKeyDown()

Description: Waits for any key to be detected in the down position. This
includes numlock, capslock, etc, which can be locked in the
down position even if they are not being held down. Will return
immediately if a key is being held down before the function is
called.

Usage: This checks for keyboard state. Users should prefer
WaitForAnyKeyPress()

Example:

See Also: WaitForAnyKeyPress()

Name/Symbol: WaitForAnyKeyDownWithTimeout()

269

Chapter 9. Detailed Function and Keyword Reference

Description: Waits until any key is detected in the down position, but will
return after a speci�ed number of milliseconds. This tests for
the key position on each cycle; users should prefer using Wait-
ForAnyKeyPressWithTimout() which waits for the keypress
event.

Usage: WaitForAnyKeyDownWithTimeout(<time>)

This returns �<anykey>� if pressed, and <timeout> if not
pressed in time.

Example:

See Also: WaitForAnyKeyPressWithTimeout(),
WaitListKeyPressWithTimeout(), WaitForAnyKeyPress(),
WaitListKeyPress()

Name/Symbol: WaitForAnyKeyPress()

Description: Waits until any key is pressed, and returns the key pressed. This
waits for the keyboard event, which is typically more reliable
and less computationally taxing than waiting for the keyboard
state (which updates based on those events anyway).

Usage: WaitForKeyPress(<time>)

This returns a text representation of the key pressed.

Example: cont <- 1

while(cont)

{

key <- WaitForAnyKEyPress()

if(key == "x")

{

cont <- 0

}

}

See Also: WaitForAnyKeyPressWithTimeout(),
WaitListKeyPressWithTimeout(), WaitListKeyPress()

Name/Symbol: WaitForAnyKeyPressWithTimeout()

Description: Waits until any key is detected in the down position, but will
return after a speci�ed number of milliseconds. This tests for
the key position on each cycle; users should prefer using Wait-
ForAnyKeyPressWithTimout() which waits for the keypress
event.

270

Chapter 9. Detailed Function and Keyword Reference

Usage: WaitForAnyKeyDownWithTimeout(<time>)

This returns �<anykey>� if pressed, and <timeout> if not
pressed in time.

Example:

See Also: WaitForAnyKeyPressWithTimeout(),
WaitListKeyPressWithTimeout()

Name/Symbol: WaitForClickOnTarget()

Description: Allows you to specify a list of graphical objects in <objectlist>
and awaits a click on any one of them, returning the correspond-
ing key in <keylist>. Also, sets the global variable gClick which
saves the location of the click, if you need it for something else.

Usage: x <- WaitForClickOnTarget(<objectlist>,<keylist>)

Example: resp <- Sequence(1,5,1)

objs <- []

loop(i,resp)

{

tmp <- EasyLabel(i +". ",

100+50*i,100,gWin,25)

objs <- Append(objs, tmp)

}

Draw()

click <- WaitForClickOnTarget(objs,resp)

Print("You clicked on " + click)

Print("Click location: [" + First(gClick) +

", " + Second(gClick) + "]")

See Also:

Name/Symbol: WaitForClickOnTargetWithTimeout()

Description: Allows you to specify a list of graphical objects in <objectlist>
and awaits a click on any one of them, returning the correspond-
ing key in <keylist>. Also, sets the global variable gClick
which saves the location of the click, if you need it for some-
thing else. The function will return after the speci�ed time
limit.

If no response is made by timeout, the text <timeout> will
be returned (instead of the corresponding keylist element), and
gClick will be set to [-1, -1].

271

Chapter 9. Detailed Function and Keyword Reference

This function can also be useful to dynamically update some
visual object while waiting for a response. Give timeout some
small number (below 50 ms, as low as 1-5), and loop over this
repeatedly until a 'proper' response is given, redrawing a timer
or other dynamic visual element each time.

Usage: x <- WaitForClickOnTarget(<objectlist>,<keylist>,<timeout-in-ms>)

Example: resp <- Sequence(1,5,1)

objs <- []

loop(i,resp)

{

tmp <- EasyLabel(i +". ",

100+50*i,100,gWin,25)

objs <- Append(objs, tmp)

}

Draw()

click <- WaitForClickOnTargetWithTimeout(objs,resp,3000)

Print("You clicked on " + click)

Print("Click location: [" + First(gClick) +

", " + Second(gClick) + "]")

See Also: WaitForDownClick(), WaitForMouseButton()

Name/Symbol: WaitForDownClick()

Description: Will wait until the mouse button is clicked down. Returns the
same 4-tuple as WaitForMouseButton:

[xpos,

ypos,

button id [1-3],

"<pressed>" or "<released>"]

but the last element will always be <pressed>. Useful as a 'click
mouse to continue' probe.

Usage: WaitForDownClick()

Example: x <- WaitForDownClick()

Print("Click location: [" + First(x) +

", " + Second(x) + "]")

See Also: WaitForClickOnTarget(), WaitForMouseButton()

272

Chapter 9. Detailed Function and Keyword Reference

Name/Symbol: WaitForKeyListDown()

Description: Returns when any one of the keys speci�ed in the argument is
down. If a key is down when called, it will return immediately.

Usage: WaitForKeyListDown(<list-of-keys>)

Example: WaitForKeyListDown(["a","z"])

See Also:

Name/Symbol: WaitForListKeyPressWithTimeout()

Description: Returns when any one of the keys speci�ed in the argument
is pressed, or when the timeout has elapsed; whichever comes
�rst. Will only return on a new keyboard/timeout events, and
so a previously pressed key will not trip this function, unlike
WaitForKeyListDown(). The optional <style> parameter is
currently unused, but may be deployed in the future for di�er-
ences in how or when things should be returned. Returns the
value of the pressed key. If the function terminates by exceed-
ing the <timeout>, it will return the string "<timeout>". Note:
previous to 2.0, returned a list ["<timeout>"], which may mean
updating logic for tests designed in the 0.x series.

Usage: WaitForListKeyPressWithTimeout(<list-of-keys>,

<timeout>,opt:<style>)

<list-of-keys> can include text versions of many keys. See
Chapter 4, section �Keyboard Entry� for complete list of key-
names.

Example: x <- WaitForListKeyPressWithTimeout(["a","z"],

2000)

if(IsList(x))

{

Print("Did Not Respond.")

}

See Also: WaitForKeyListDown, WaitForListKeyPress,
WaitForKeyPressWithTimeout

Name/Symbol: WaitForListKeyPress()

273

Chapter 9. Detailed Function and Keyword Reference

Description: Returns when any one of the keys speci�ed in the argument
is pressed. Will only return on a new keyboard event, and
so a previously pressed key will not trip this function, unlike
WaitForKeyListDown() Returns a string indicating the value
of the keypress.

Usage: WaitForListKeyPress(<list-of-keys>)

Example: WaitForListKeyPress(["a","z"])

See Also: WaitForKeyListDown, WaitForListKeyPressWithTimeout

Name/Symbol: WaitForKeyPress()

Description: Waits for a keypress event that matches the speci�ed key. Usage
of this function is preferred over WaitForKeyDown(), which tests
the state of the key. Returns the value of the key pressed.

Usage: WaitForKeyPress(<key>)

Example:

See Also: WaitForAnyKeyPress(), WaitForKeyRelease(),
WaitForListKeyPress()

Name/Symbol: WaitForKeyUp()

Description:

Usage:

Example:

See Also:

Name/Symbol: WaitForMouseButton()

Description: Waits for a mouse click event to occur. This takes no arguments,
and returns a 4-tuple list, indicating:

[xpos,

ypos,

button id [1-3],

"<pressed>" or "<released>"]

274

Chapter 9. Detailed Function and Keyword Reference

Usage: WaitForMouseButton()

Example: ## Here is how to wait for a mouse down-click

continue <- 1

while(continue)

{

x <- WaitForMouseButton()

if(Nth(x,4)=="<pressed>")

{

continue <- 0

}

}

Print("Clicked")

See Also: ShowCursor, WaitForMouseButtonWithTimeout

SetMouseCursorPosition, GetMouseCursorPosition

Name/Symbol: WaitForMouseButtonWithTimeout()

Description: Waits for a mouse click event to occur, or a timeout to be
reached. This takes a single argument: timeout delay in ms.
When clicked, it returns a 4-tuple list, indicating:

[xpos,

ypos,

button id [1-3],

"<pressed>" or "<released>"]

when not click and timeout is reached, it returns a list:
[timeout]

Usage: WaitForMouseButtonWithTimeOut()

Example: ## Here is how to wait for a mouse down-click

continue <- 1

while(continue)

{

x <- WaitForMouseButtonWithTimeout()

if(First(x)=="<timeout>")

{

Print("time is "+GetTime())

continue <- 1

} else {

continue <- 0

275

Chapter 9. Detailed Function and Keyword Reference

}

}

Print("Clicked")

See Also: ShowCursor, SetMouseCursorPosition,
GetMouseCursorPosition

Name/Symbol: WaitForNetworkConnection()

Description: Listens on a port, waiting until another computer or process
connects. Return a network object that can be used for com-
munication.

Usage: WaitForNetworkConnection(<port>)

Example: See nim.pbl for example of two-way network connection.

net <- WaitForNetworkConnection(1234)

dat <- GetData(net,20)

Print(dat)

CloseNetworkConnection(net)

See Also: ConnectToHost, ConnectToIP, GetData,
WaitForNetworkConnection, SendData, ConvertIPString,
CloseNetworkConnection

Name/Symbol: while

Description: `while' is a keyword, and so is part of the syntax, not a function
per se. It executes the code inside the {} brackets until the test
inside the () executes as false. This can easily lead to an in�nite
loop if conditions are not met. Also, there is currently no break
statement to allow execution to halt early. Unlike some other
languages, PEBL requires that the {} be present.

Usage:
while(<test expression>)

{

code line 1

code line 2

}

276

Chapter 9. Detailed Function and Keyword Reference

Example: i <- 1

while(i <= 10)

{

Print(i)

i <- i + 1

} # prints out the numbers 1 through 10

See Also: loop(), { }

Name/Symbol: WritePNG()

Description: WritePNG() creates a graphic �le of the screen or a widget on
the screen. It can also be given an arbitrary widget. For the
most part, widgets added to other widgets will be captured �ne,
but sometimes polygons and shapes added to other widgets may
not appear in the output png.

Usage: x <- WritePNG("screen1.png",gWin)

Use like this to create an animated screencast

define DrawMe()

{

pname <- "fileout"+ZeroPad(gid,5)+".png"

Draw()

WritePNG(pname,gWin)

}

define Start(p)

{

gid <- 1

gWin <- MakeWindow()

img <- MakeImage("pebl.png")

AddObject(img,gWin)

while(gid < 100)

{

Move(img,RandomDiscrete(800),

RandomDiscrete(600))

DrawMe()

gid <- gid + 1

}

}

See Also: FileWriteTable

277

Chapter 9. Detailed Function and Keyword Reference

9.24 Z

Name/Symbol: ZeroPad

Description: Takes a number and pads it with zeroes left of the decimal
point so that its length is equal to <size>. Argument must be
a positive integer and less than ten digits. Returns a string.

Usage: ZeroPad(<number>, <length>)

Example: Print(ZeroPad(33,5)) # "00033"

Print(ZeroPad(123456,6)) #"123456"

Print(ZeroPad(1,8)) #"00000001"

See Also: Format()

Name/Symbol: ZoomPoints

Description: Takes a set of points (de�ned in a joined list
[[x1,x2,x3,...],[y1,y2,y3,...]] and adjusts them in the x and
y direction independently, returning a similar [[x],[y]] list.

Note: The original points should be centered at zero, because
the get adjusted relative to zero, not relative to their center.

Usage: ZoomPoints(points,<xzoom>,<yzoom>)

Example: points <- [[1,2,3,4],[20,21,22,23]]

newpoints <- ZoomPoints(points,2,.5)

##Produces [[2,4,6,8],[10,11.5,11,11.5]]

See Also: RotatePoints(), ReflectPoints

278

Chapter 10

Color Name Reference

In PEBL, around 750 colors can be accessed by name, using the MakeColor()
function. Each name or corresponds to a speci�c RGB value. The following
table provides examples of the particular color names, RGB values, and the
obtained shade produced by PEBL.

Table 10.1: Color Reference

Color Name Red Green Blue Example

ALICE BLUE 240 248 255
ALICEBLUE 240 248 255
ANTIQUE WHITE 250 235 215
ANTIQUEWHITE 250 235 215
ANTIQUEWHITE1 255 239 219
ANTIQUEWHITE2 238 223 204
ANTIQUEWHITE3 205 192 176
ANTIQUEWHITE4 139 131 120
AQUAMARINE 127 255 212
AQUAMARINE1 127 255 212
AQUAMARINE2 118 238 198
AQUAMARINE3 102 205 170
AQUAMARINE4 69 139 116
AZURE 240 255 255
AZURE1 240 255 255
AZURE2 224 238 238
AZURE3 193 205 205
AZURE4 131 139 139
BEIGE 245 245 220
BISQUE 255 228 196
BISQUE1 255 228 196
BISQUE2 238 213 183

279

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

BISQUE3 205 183 158
BISQUE4 139 125 107
BLACK 0 0 0
BLANCHED ALMOND 255 235 205
BLANCHEDALMOND 255 235 205
BLUE 0 0 255
BLUE VIOLET 138 43 226
BLUE1 0 0 255
BLUE2 0 0 238
BLUE3 0 0 205
BLUE4 0 0 139
BLUEVIOLET 138 43 226
BROWN 165 42 42
BROWN1 255 64 64
BROWN2 238 59 59
BROWN3 205 51 51
BROWN4 139 35 35
BURLYWOOD 222 184 135
BURLYWOOD1 255 211 155
BURLYWOOD2 238 197 145
BURLYWOOD3 205 170 125
BURLYWOOD4 139 115 85
CADET BLUE 95 158 160
CADETBLUE 95 158 160
CADETBLUE1 152 245 255
CADETBLUE2 142 229 238
CADETBLUE3 122 197 205
CADETBLUE4 83 134 139
CHARTREUSE 127 255 0
CHARTREUSE1 127 255 0
CHARTREUSE2 118 238 0
CHARTREUSE3 102 205 0
CHARTREUSE4 69 139 0
CHOCOLATE 210 105 30
CHOCOLATE1 255 127 36
CHOCOLATE2 238 118 33
CHOCOLATE3 205 102 29
CHOCOLATE4 139 69 19
CORAL 255 127 80
CORAL1 255 114 86
CORAL2 238 106 80
CORAL3 205 91 69
CORAL4 139 62 47

280

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

CORNFLOWER BLUE 100 149 237
CORNFLOWERBLUE 100 149 237
CORNSILK 255 248 220
CORNSILK1 255 248 220
CORNSILK2 238 232 205
CORNSILK3 205 200 177
CORNSILK4 139 136 120
CYAN 0 255 255
CYAN1 0 255 255
CYAN2 0 238 238
CYAN3 0 205 205
CYAN4 0 139 139
DARK BLUE 0 0 139
DARK CYAN 0 139 139
DARK GOLDENROD 184 134 11
DARK GRAY 169 169 169
DARK GREEN 0 100 0
DARK GREY 169 169 169
DARK KHAKI 189 183 107
DARK MAGENTA 139 0 139
DARK OLIVE GREEN 85 107 47
DARK ORANGE 255 140 0
DARK ORCHID 153 50 204
DARK RED 139 0 0
DARK SALMON 233 150 122
DARK SEA GREEN 143 188 143
DARK SLATE BLUE 72 61 139
DARK SLATE GRAY 47 79 79
DARK SLATE GREY 47 79 79
DARK TURQUOISE 0 206 209
DARK VIOLET 148 0 211
DARKBLUE 0 0 139
DARKCYAN 0 139 139
DARKGOLDENROD 184 134 11
DARKGOLDENROD1 255 185 15
DARKGOLDENROD2 238 173 14
DARKGOLDENROD3 205 149 12
DARKGOLDENROD4 139 101 8
DARKGRAY 169 169 169
DARKGREEN 0 100 0
DARKGREY 169 169 169
DARKKHAKI 189 183 107
DARKMAGENTA 139 0 139

281

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

DARKOLIVEGREEN 85 107 47
DARKOLIVEGREEN1 202 255 112
DARKOLIVEGREEN2 188 238 104
DARKOLIVEGREEN3 162 205 90
DARKOLIVEGREEN4 110 139 61
DARKORANGE 255 140 0
DARKORANGE1 255 127 0
DARKORANGE2 238 118 0
DARKORANGE3 205 102 0
DARKORANGE4 139 69 0
DARKORCHID 153 50 204
DARKORCHID1 191 62 255
DARKORCHID2 178 58 238
DARKORCHID3 154 50 205
DARKORCHID4 104 34 139
DARKRED 139 0 0
DARKSALMON 233 150 122
DARKSEAGREEN 143 188 143
DARKSEAGREEN1 193 255 193
DARKSEAGREEN2 180 238 180
DARKSEAGREEN3 155 205 155
DARKSEAGREEN4 105 139 105
DARKSLATEBLUE 72 61 139
DARKSLATEGRAY 47 79 79
DARKSLATEGRAY1 151 255 255
DARKSLATEGRAY2 141 238 238
DARKSLATEGRAY3 121 205 205
DARKSLATEGRAY4 82 139 139
DARKSLATEGREY 47 79 79
DARKTURQUOISE 0 206 209
DARKVIOLET 148 0 211
DEEP PINK 255 20 147
DEEP SKY BLUE 0 191 255
DEEPPINK 255 20 147
DEEPPINK1 255 20 147
DEEPPINK2 238 18 137
DEEPPINK3 205 16 118
DEEPPINK4 139 10 80
DEEPSKYBLUE 0 191 255
DEEPSKYBLUE1 0 191 255
DEEPSKYBLUE2 0 178 238
DEEPSKYBLUE3 0 154 205
DEEPSKYBLUE4 0 104 139

282

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

DIM GRAY 105 105 105
DIM GREY 105 105 105
DIMGRAY 105 105 105
DIMGREY 105 105 105
DODGER BLUE 30 144 255
DODGERBLUE 30 144 255
DODGERBLUE1 30 144 255
DODGERBLUE2 28 134 238
DODGERBLUE3 24 116 205
DODGERBLUE4 16 78 139
FIREBRICK 178 34 34
FIREBRICK1 255 48 48
FIREBRICK2 238 44 44
FIREBRICK3 205 38 38
FIREBRICK4 139 26 26
FLORAL WHITE 255 250 240
FLORALWHITE 255 250 240
FOREST GREEN 34 139 34
FORESTGREEN 34 139 34
GAINSBORO 220 220 220
GHOST WHITE 248 248 255
GHOSTWHITE 248 248 255
GOLD 255 215 0
GOLD1 255 215 0
GOLD2 238 201 0
GOLD3 205 173 0
GOLD4 139 117 0
GOLDENROD 218 165 32
GOLDENROD1 255 193 37
GOLDENROD2 238 180 34
GOLDENROD3 205 155 29
GOLDENROD4 139 105 20
GRAY 190 190 190
GRAY0 0 0 0
GRAY1 3 3 3
GRAY2 5 5 5
GRAY3 8 8 8
GRAY4 10 10 10
GRAY5 13 13 13
GRAY6 15 15 15
GRAY7 18 18 18
GRAY8 20 20 20
GRAY9 23 23 23

283

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

GRAY10 26 26 26
GRAY11 28 28 28
GRAY12 31 31 31
GRAY13 33 33 33
GRAY14 36 36 36
GRAY15 38 38 38
GRAY16 41 41 41
GRAY17 43 43 43
GRAY18 46 46 46
GRAY19 48 48 48
GRAY20 51 51 51
GRAY21 54 54 54
GRAY22 56 56 56
GRAY23 59 59 59
GRAY24 61 61 61
GRAY25 64 64 64
GRAY26 66 66 66
GRAY27 69 69 69
GRAY28 71 71 71
GRAY29 74 74 74
GRAY30 77 77 77
GRAY31 79 79 79
GRAY32 82 82 82
GRAY33 84 84 84
GRAY34 87 87 87
GRAY35 89 89 89
GRAY36 92 92 92
GRAY37 94 94 94
GRAY38 97 97 97
GRAY39 99 99 99
GRAY40 102 102 102
GRAY41 105 105 105
GRAY42 107 107 107
GRAY43 110 110 110
GRAY44 112 112 112
GRAY45 115 115 115
GRAY46 117 117 117
GRAY47 120 120 120
GRAY48 122 122 122
GRAY49 125 125 125
GRAY50 127 127 127
GRAY51 130 130 130
GRAY52 133 133 133

284

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

GRAY53 135 135 135
GRAY54 138 138 138
GRAY55 140 140 140
GRAY56 143 143 143
GRAY57 145 145 145
GRAY58 148 148 148
GRAY59 150 150 150
GRAY60 153 153 153
GRAY61 156 156 156
GRAY62 158 158 158
GRAY63 161 161 161
GRAY64 163 163 163
GRAY65 166 166 166
GRAY66 168 168 168
GRAY67 171 171 171
GRAY68 173 173 173
GRAY69 176 176 176
GRAY70 179 179 179
GRAY71 181 181 181
GRAY72 184 184 184
GRAY73 186 186 186
GRAY74 189 189 189
GRAY75 191 191 191
GRAY76 194 194 194
GRAY77 196 196 196
GRAY78 199 199 199
GRAY79 201 201 201
GRAY80 204 204 204
GRAY81 207 207 207
GRAY82 209 209 209
GRAY83 212 212 212
GRAY84 214 214 214
GRAY85 217 217 217
GRAY86 219 219 219
GRAY87 222 222 222
GRAY88 224 224 224
GRAY89 227 227 227
GRAY90 229 229 229
GRAY91 232 232 232
GRAY92 235 235 235
GRAY93 237 237 237
GRAY94 240 240 240
GRAY95 242 242 242

285

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

GRAY96 245 245 245
GRAY97 247 247 247
GRAY98 250 250 250
GRAY99 252 252 252
GRAY100 255 255 255
GREEN 0 255 0
GREEN YELLOW 173 255 47
GREEN1 0 255 0
GREEN2 0 238 0
GREEN3 0 205 0
GREEN4 0 139 0
GREENYELLOW 173 255 47
GREY 190 190 190
GREY0 0 0 0
GREY1 3 3 3
GREY2 5 5 5
GREY3 8 8 8
GREY4 10 10 10
GREY5 13 13 13
GREY6 15 15 15
GREY7 18 18 18
GREY8 20 20 20
GREY9 23 23 23
GREY10 26 26 26
GREY11 28 28 28
GREY12 31 31 31
GREY13 33 33 33
GREY14 36 36 36
GREY15 38 38 38
GREY16 41 41 41
GREY17 43 43 43
GREY18 46 46 46
GREY19 48 48 48
GREY20 51 51 51
GREY21 54 54 54
GREY22 56 56 56
GREY23 59 59 59
GREY24 61 61 61
GREY25 64 64 64
GREY26 66 66 66
GREY27 69 69 69
GREY28 71 71 71
GREY29 74 74 74

286

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

GREY30 77 77 77
GREY31 79 79 79
GREY32 82 82 82
GREY33 84 84 84
GREY34 87 87 87
GREY35 89 89 89
GREY36 92 92 92
GREY37 94 94 94
GREY38 97 97 97
GREY39 99 99 99
GREY40 102 102 102
GREY41 105 105 105
GREY42 107 107 107
GREY43 110 110 110
GREY44 112 112 112
GREY45 115 115 115
GREY46 117 117 117
GREY47 120 120 120
GREY48 122 122 122
GREY49 125 125 125
GREY50 127 127 127
GREY51 130 130 130
GREY52 133 133 133
GREY53 135 135 135
GREY54 138 138 138
GREY55 140 140 140
GREY56 143 143 143
GREY57 145 145 145
GREY58 148 148 148
GREY59 150 150 150
GREY60 153 153 153
GREY61 156 156 156
GREY62 158 158 158
GREY63 161 161 161
GREY64 163 163 163
GREY65 166 166 166
GREY66 168 168 168
GREY67 171 171 171
GREY68 173 173 173
GREY69 176 176 176
GREY70 179 179 179
GREY71 181 181 181
GREY72 184 184 184

287

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

GREY73 186 186 186
GREY74 189 189 189
GREY75 191 191 191
GREY76 194 194 194
GREY77 196 196 196
GREY78 199 199 199
GREY79 201 201 201
GREY80 204 204 204
GREY81 207 207 207
GREY82 209 209 209
GREY83 212 212 212
GREY84 214 214 214
GREY85 217 217 217
GREY86 219 219 219
GREY87 222 222 222
GREY88 224 224 224
GREY89 227 227 227
GREY90 229 229 229
GREY91 232 232 232
GREY92 235 235 235
GREY93 237 237 237
GREY94 240 240 240
GREY95 242 242 242
GREY96 245 245 245
GREY97 247 247 247
GREY98 250 250 250
GREY99 252 252 252
GREY100 255 255 255
HONEYDEW 240 255 240
HONEYDEW1 240 255 240
HONEYDEW2 224 238 224
HONEYDEW3 193 205 193
HONEYDEW4 131 139 131
HOT PINK 255 105 180
HOTPINK 255 105 180
HOTPINK1 255 110 180
HOTPINK2 238 106 167
HOTPINK3 205 96 144
HOTPINK4 139 58 98
INDIAN RED 205 92 92
INDIANRED 205 92 92
INDIANRED1 255 106 106
INDIANRED2 238 99 99

288

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

INDIANRED3 205 85 85
INDIANRED4 139 58 58
IVORY 255 255 240
IVORY1 255 255 240
IVORY2 238 238 224
IVORY3 205 205 193
IVORY4 139 139 131
KHAKI 240 230 140
KHAKI1 255 246 143
KHAKI2 238 230 133
KHAKI3 205 198 115
KHAKI4 139 134 78
LAVENDER 230 230 250
LAVENDER BLUSH 255 240 245
LAVENDERBLUSH 255 240 245
LAVENDERBLUSH1 255 240 245
LAVENDERBLUSH2 238 224 229
LAVENDERBLUSH3 205 193 197
LAVENDERBLUSH4 139 131 134
LAWN GREEN 124 252 0
LAWNGREEN 124 252 0
LEMON CHIFFON 255 250 205
LEMONCHIFFON 255 250 205
LEMONCHIFFON1 255 250 205
LEMONCHIFFON2 238 233 191
LEMONCHIFFON3 205 201 165
LEMONCHIFFON4 139 137 112
LIGHT BLUE 173 216 230
LIGHT CORAL 240 128 128
LIGHT CYAN 224 255 255
LIGHT GOLDENROD YELLOW 250 250 210
LIGHT GOLDENROD 238 221 130
LIGHT GRAY 211 211 211
LIGHT GREEN 144 238 144
LIGHT GREY 211 211 211
LIGHT PINK 255 182 193
LIGHT SALMON 255 160 122
LIGHT SEA GREEN 32 178 170
LIGHT SKY BLUE 135 206 250
LIGHT SLATE BLUE 132 112 255
LIGHT SLATE GRAY 119 136 153
LIGHT SLATE GREY 119 136 153
LIGHT STEEL BLUE 176 196 222

289

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

LIGHT YELLOW 255 255 224
LIGHTBLUE 173 216 230
LIGHTBLUE1 191 239 255
LIGHTBLUE2 178 223 238
LIGHTBLUE3 154 192 205
LIGHTBLUE4 104 131 139
LIGHTCORAL 240 128 128
LIGHTCYAN 224 255 255
LIGHTCYAN1 224 255 255
LIGHTCYAN2 209 238 238
LIGHTCYAN3 180 205 205
LIGHTCYAN4 122 139 139
LIGHTGOLDENROD 238 221 130
LIGHTGOLDENROD1 255 236 139
LIGHTGOLDENROD2 238 220 130
LIGHTGOLDENROD3 205 190 112
LIGHTGOLDENROD4 139 129 76
LIGHTGOLDENRODYELLOW 250 250 210
LIGHTGRAY 211 211 211
LIGHTGREEN 144 238 144
LIGHTGREY 211 211 211
LIGHTPINK 255 182 193
LIGHTPINK1 255 174 185
LIGHTPINK2 238 162 173
LIGHTPINK3 205 140 149
LIGHTPINK4 139 95 101
LIGHTSALMON 255 160 122
LIGHTSALMON1 255 160 122
LIGHTSALMON2 238 149 114
LIGHTSALMON3 205 129 98
LIGHTSALMON4 139 87 66
LIGHTSEAGREEN 32 178 170
LIGHTSKYBLUE 135 206 250
LIGHTSKYBLUE1 176 226 255
LIGHTSKYBLUE2 164 211 238
LIGHTSKYBLUE3 141 182 205
LIGHTSKYBLUE4 96 123 139
LIGHTSLATEBLUE 132 112 255
LIGHTSLATEGRAY 119 136 153
LIGHTSLATEGREY 119 136 153
LIGHTSTEELBLUE 176 196 222
LIGHTSTEELBLUE1 202 225 255
LIGHTSTEELBLUE2 188 210 238

290

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

LIGHTSTEELBLUE3 162 181 205
LIGHTSTEELBLUE4 110 123 139
LIGHTYELLOW 255 255 224
LIGHTYELLOW1 255 255 224
LIGHTYELLOW2 238 238 209
LIGHTYELLOW3 205 205 180
LIGHTYELLOW4 139 139 122
LIME GREEN 50 205 50
LIMEGREEN 50 205 50
LINEN 250 240 230
MAGENTA 255 0 255
MAGENTA1 255 0 255
MAGENTA2 238 0 238
MAGENTA3 205 0 205
MAGENTA4 139 0 139
MAROON 176 48 96
MAROON1 255 52 179
MAROON2 238 48 167
MAROON3 205 41 144
MAROON4 139 28 98
MEDIUM AQUAMARINE 102 205 170
MEDIUM BLUE 0 0 205
MEDIUM ORCHID 186 85 211
MEDIUM PURPLE 147 112 219
MEDIUM SEA GREEN 60 179 113
MEDIUM SLATE BLUE 123 104 238
MEDIUM SPRING GREEN 0 250 154
MEDIUM TURQUOISE 72 209 204
MEDIUM VIOLET RED 199 21 133
MEDIUMAQUAMARINE 102 205 170
MEDIUMBLUE 0 0 205
MEDIUMORCHID 186 85 211
MEDIUMORCHID1 224 102 255
MEDIUMORCHID2 209 95 238
MEDIUMORCHID3 180 82 205
MEDIUMORCHID4 122 55 139
MEDIUMPURPLE 147 112 219
MEDIUMPURPLE1 171 130 255
MEDIUMPURPLE2 159 121 238
MEDIUMPURPLE3 137 104 205
MEDIUMPURPLE4 93 71 139
MEDIUMSEAGREEN 60 179 113
MEDIUMSLATEBLUE 123 104 238

291

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

MEDIUMSPRINGGREEN 0 250 154
MEDIUMTURQUOISE 72 209 204
MEDIUMVIOLETRED 199 21 133
MIDNIGHT BLUE 25 25 112
MIDNIGHTBLUE 25 25 112
MINT CREAM 245 255 250
MINTCREAM 245 255 250
MISTY ROSE 255 228 225
MISTYROSE 255 228 225
MISTYROSE1 255 228 225
MISTYROSE2 238 213 210
MISTYROSE3 205 183 181
MISTYROSE4 139 125 123
MOCCASIN 255 228 181
NAVAJO WHITE 255 222 173
NAVAJOWHITE 255 222 173
NAVAJOWHITE1 255 222 173
NAVAJOWHITE2 238 207 161
NAVAJOWHITE3 205 179 139
NAVAJOWHITE4 139 121 94
NAVY 0 0 128
NAVY BLUE 0 0 128
NAVYBLUE 0 0 128
OLD LACE 253 245 230
OLDLACE 253 245 230
OLIVE DRAB 107 142 35
OLIVEDRAB 107 142 35
OLIVEDRAB1 192 255 62
OLIVEDRAB2 179 238 58
OLIVEDRAB3 154 205 50
OLIVEDRAB4 105 139 34
ORANGE 255 165 0
ORANGE RED 255 69 0
ORANGE1 255 165 0
ORANGE2 238 154 0
ORANGE3 205 133 0
ORANGE4 139 90 0
ORANGERED 255 69 0
ORANGERED1 255 69 0
ORANGERED2 238 64 0
ORANGERED3 205 55 0
ORANGERED4 139 37 0
ORCHID 218 112 214

292

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

ORCHID1 255 131 250
ORCHID2 238 122 233
ORCHID3 205 105 201
ORCHID4 139 71 137
PALE GOLDENROD 238 232 170
PALE GREEN 152 251 152
PALE TURQUOISE 175 238 238
PALE VIOLET RED 219 112 147
PALEGOLDENROD 238 232 170
PALEGREEN 152 251 152
PALEGREEN1 154 255 154
PALEGREEN2 144 238 144
PALEGREEN3 124 205 124
PALEGREEN4 84 139 84
PALETURQUOISE 175 238 238
PALETURQUOISE1 187 255 255
PALETURQUOISE2 174 238 238
PALETURQUOISE3 150 205 205
PALETURQUOISE4 102 139 139
PALEVIOLETRED 219 112 147
PALEVIOLETRED1 255 130 171
PALEVIOLETRED2 238 121 159
PALEVIOLETRED3 205 104 137
PALEVIOLETRED4 139 71 93
PAPAYA WHIP 255 239 213
PAPAYAWHIP 255 239 213
PEACH PUFF 255 218 185
PEACHPUFF 255 218 185
PEACHPUFF1 255 218 185
PEACHPUFF2 238 203 173
PEACHPUFF3 205 175 149
PEACHPUFF4 139 119 101
PERU 205 133 63
PINK 255 192 203
PINK1 255 181 197
PINK2 238 169 184
PINK3 205 145 158
PINK4 139 99 108
PLUM 221 160 221
PLUM1 255 187 255
PLUM2 238 174 238
PLUM3 205 150 205
PLUM4 139 102 139

293

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

POWDER BLUE 176 224 230
POWDERBLUE 176 224 230
PURPLE 160 32 240
PURPLE1 155 48 255
PURPLE2 145 44 238
PURPLE3 125 38 205
PURPLE4 85 26 139
RED 255 0 0
RED1 255 0 0
RED2 238 0 0
RED3 205 0 0
RED4 139 0 0
ROSY BROWN 188 143 143
ROSYBROWN 188 143 143
ROSYBROWN1 255 193 193
ROSYBROWN2 238 180 180
ROSYBROWN3 205 155 155
ROSYBROWN4 139 105 105
ROYAL BLUE 65 105 225
ROYALBLUE 65 105 225
ROYALBLUE1 72 118 255
ROYALBLUE2 67 110 238
ROYALBLUE3 58 95 205
ROYALBLUE4 39 64 139
SADDLE BROWN 139 69 19
SADDLEBROWN 139 69 19
SALMON 250 128 114
SALMON1 255 140 105
SALMON2 238 130 98
SALMON3 205 112 84
SALMON4 139 76 57
SANDY BROWN 244 164 96
SANDYBROWN 244 164 96
SEA GREEN 46 139 87
SEAGREEN 46 139 87
SEAGREEN1 84 255 159
SEAGREEN2 78 238 148
SEAGREEN3 67 205 128
SEAGREEN4 46 139 87
SEASHELL 255 245 238
SEASHELL1 255 245 238
SEASHELL2 238 229 222
SEASHELL3 205 197 191

294

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

SEASHELL4 139 134 130
SIENNA 160 82 45
SIENNA1 255 130 71
SIENNA2 238 121 66
SIENNA3 205 104 57
SIENNA4 139 71 38
SKY BLUE 135 206 235
SKYBLUE 135 206 235
SKYBLUE1 135 206 255
SKYBLUE2 126 192 238
SKYBLUE3 108 166 205
SKYBLUE4 74 112 139
SLATE BLUE 106 90 205
SLATE GRAY 112 128 144
SLATE GREY 112 128 144
SLATEBLUE 106 90 205
SLATEBLUE1 131 111 255
SLATEBLUE2 122 103 238
SLATEBLUE3 105 89 205
SLATEBLUE4 71 60 139
SLATEGRAY 112 128 144
SLATEGRAY1 198 226 255
SLATEGRAY2 185 211 238
SLATEGRAY3 159 182 205
SLATEGRAY4 108 123 139
SLATEGREY 112 128 144
SNOW 255 250 250
SNOW1 255 250 250
SNOW2 238 233 233
SNOW3 205 201 201
SNOW4 139 137 137
SPRING GREEN 0 255 127
SPRINGGREEN 0 255 127
SPRINGGREEN1 0 255 127
SPRINGGREEN2 0 238 118
SPRINGGREEN3 0 205 102
SPRINGGREEN4 0 139 69
STEEL BLUE 70 130 180
STEELBLUE 70 130 180
STEELBLUE1 99 184 255
STEELBLUE2 92 172 238
STEELBLUE3 79 148 205
STEELBLUE4 54 100 139

295

Chapter 10. Color Name Reference

Color Name Red Green Blue Example

TAN 210 180 140
TAN1 255 165 79
TAN2 238 154 73
TAN3 205 133 63
TAN4 139 90 43
THISTLE 216 191 216
THISTLE1 255 225 255
THISTLE2 238 210 238
THISTLE3 205 181 205
THISTLE4 139 123 139
TOMATO 255 99 71
TOMATO1 255 99 71
TOMATO2 238 92 66
TOMATO3 205 79 57
TOMATO4 139 54 38
TURQUOISE 64 224 208
TURQUOISE1 0 245 255
TURQUOISE2 0 229 238
TURQUOISE3 0 197 205
TURQUOISE4 0 134 139
VIOLET 238 130 238
VIOLET RED 208 32 144
VIOLETRED 208 32 144
VIOLETRED1 255 62 150
VIOLETRED2 238 58 140
VIOLETRED3 205 50 120
VIOLETRED4 139 34 82
WHEAT 245 222 179
WHEAT1 255 231 186
WHEAT2 238 216 174
WHEAT3 205 186 150
WHEAT4 139 126 102
WHITE 255 255 255
WHITE SMOKE 245 245 245
WHITESMOKE 245 245 245
YELLOW 255 255 0
YELLOW GREEN 154 205 50
YELLOW1 255 255 0
YELLOW2 238 238 0
YELLOW3 205 205 0
YELLOW4 139 139 0
YELLOWGREEN 154 205 50

296

	About
	Usage
	How to Compile PEBL 2.0
	Linux
	Microsoft Windows
	Mac OSX

	Installation
	Linux
	Microsoft Windows
	Macintosh OSX

	How to Run a PEBL Program
	Linux
	 Microsoft Windows
	 Macintosh OSX

	How to stop running a program
	Command-line arguments
	System Status Output

	How to Write a PEBL Program
	Basic PEBL Scripts
	Case Sensitivity
	 Syntax
	Expressions
	loop() syntax.
	Variables
	Coercion/casting
	Variable Naming
	Variable Scope
	Copies and Assignment
	Passing by Reference and by Value

	Functions
	 A Simple Program

	Overview of Object Subsystems
	Lists
	Growing Lists
	Recursion on lists

	Fonts
	Colors
	Windows
	Graphical Widgets
	Images
	Canvases
	Shapes
	Circle
	Ellipse
	Square
	Rectangle
	Line
	Polygon
	Bezier

	Text Labels
	Text Boxes
	User-Editable Text Boxes
	Audio
	Movie Files
	Custom objects
	Keyboard Entry
	Joystick Input
	Files
	Network Connections
	TCP/IP Overview
	Addresses and Ports
	Sending and Receiving Data
	Closing networks

	Parallel Port
	Serial Port
	The Event Loop
	Parameter Setting
	Errors and Warnings
	Paths and Path Searching
	Controlling the Video settings
	Screen resolution
	Fullscreen mode
	Video drivers
	Synchronize to vertical refresh signal (vsync)
	Multiple windows

	StickyKeys
	Provided Media Files
	Special Variables

	 Function Quick Reference
	PEBL User Interface Functions
	Overview
	TextEntry
	Usage
	Methods and related functions

	Menu
	Usage
	Methods and related functions

	PullDown
	Usage
	Methods and related functions

	Button
	Methods
	Usage

	Checkbox
	Usage
	Methods and associated functions

	Scrollbox
	Usage
	Methods and related functions

	ScrollingTextBox
	Usage
	Methods and related functions

	PopupMessageBox
	Usage

	PopUpEntryBox
	Usage

	The PEBL Launcher
	History of the Launcher
	How it works
	Features
	File browser
	Participant code
	Experimenter code
	Language
	Commmand Line Options
	Edit and Parameters
	Fullscreen Mode
	Demographics Collection
	Experiment Chains
	Saving Experiment Chains
	Editing Experiment chains
	Loading Experiment Chains
	Description and Screenshot
	Message feedback windows
	Other buttons
	Menu

	Launching an experiment
	Launching an experiment chain
	Translating the Launcher
	Utility:Parameter setting
	Utility: Combining data files

	The PEBL Psychological Test Battery
	About the PEBL Test Battery
	Setting Parameters of Battery Tests
	Translating or changing test instructions
	The Tests

	Detailed Function and Keyword Reference
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Color Name Reference

